项目名称: 小麦基因定点突变技术体系建立及在春化作用机理研究上的应用

项目编号: No.31271795

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 农业科学

项目作者: 高彩霞

作者单位: 中国科学院遗传与发育生物学研究所

项目金额: 72万元

中文摘要: 小麦是世界上最重要的粮食作物之一,但小麦复杂的基因组和遗传背景导致了其遗传分析困难,遗传转化效率低下,大大限制了小麦功能基因的研究。因此,在小麦中建立高效的功能基因组学研究方法极为重要。人工核酸酶,包括锌指核酸酶(ZFNs)和TALE核酸酶(TALENs)是近几年发展起来的高效的基因定点改造技术,目前在多种动植物中的成功利用,显示了其巨大的潜力。在我们已经建立的小麦规模化遗传转化平台的基础上,本研究试图在小麦中建立锌指核酸酶(ZFNs)和TALE核酸酶(TALENs)定点突变技术体系,再选用小麦开花基因VRN1、VRN2和VRN3作为内源基因突变的对象,通过ZFNs和TALENs对它们进行定点改造,结合表型分析和遗传学分析,进一步阐述这三个基因在小麦春化调控途径中的功能和相互作用。高效的小麦基因定点突变技术体系的建立将为小麦功能基因组学的研究和小麦品种的定向改良提供一个有效的手段。

中文关键词: 小麦;基因组编辑;TALENs;CRISPR/Cas9;春化基因

英文摘要: Wheat is one of the world's most important food crops. However, the complexity of its genome and genetic background led to the difficulty of genetic analysis and low efficiency of genetic transformation. The functional genomics research in wheat was therefore greatly restricted. Artificially engineered nucleases, including zinc finger nucleases (ZFNs) and TALE nucleases (TALENs), are the recently developed site-directed mutagenesis technologies. The great potentials of ZFNs and TALENs have been successfully exploited in a variety of plants and animals. Based on our efficient and stable wheat transformation platform, in this study, we attempts to develop efficient site-directed mutagenesis in wheat using custom-designed zinc finger nucleases and TALENs. Furthermore, ZFNs and TALENs recognizing the wheat flowering genes VRN1, VRN2, VRN3 will be made and introduced into wheat genome. By phenotypic and genetic analysis for the mutants, we will describe the functions and interactions of these three genes in mechanism of vernalization in wheat. The efficient site-directed mutagenesis in wheat will provide an effective technology for wheat functional genomics research and targeted improvements of wheat variety.

英文关键词: wheat;genome editing;TALENs;CRISPR/Cas9;wheat vernalization genes

成为VIP会员查看完整内容
0

相关内容

【NeurIPS2021】InfoGCL:信息感知图对比学习
专知会员服务
37+阅读 · 2021年11月1日
专知会员服务
29+阅读 · 2021年8月27日
专知会员服务
46+阅读 · 2021年5月24日
5G网络安全标准化白皮书, 53页pdf
专知会员服务
67+阅读 · 2021年5月15日
专知会员服务
114+阅读 · 2021年4月7日
中国工业机器视觉产业发展白皮书,31页pdf
专知会员服务
103+阅读 · 2020年11月14日
【KDD2020】自适应多通道图卷积神经网络
专知会员服务
121+阅读 · 2020年7月9日
新时期我国信息技术产业的发展
专知会员服务
71+阅读 · 2020年1月18日
中文知识图谱构建技术以及应用的综述
专知会员服务
314+阅读 · 2019年10月19日
人工智能预测RNA和DNA结合位点,以加速药物发现
【NeurIPS2021】InfoGCL:信息感知图对比学习
图与推荐
1+阅读 · 2021年11月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
19+阅读 · 2021年4月8日
Arxiv
19+阅读 · 2018年3月28日
小贴士
相关主题
相关VIP内容
【NeurIPS2021】InfoGCL:信息感知图对比学习
专知会员服务
37+阅读 · 2021年11月1日
专知会员服务
29+阅读 · 2021年8月27日
专知会员服务
46+阅读 · 2021年5月24日
5G网络安全标准化白皮书, 53页pdf
专知会员服务
67+阅读 · 2021年5月15日
专知会员服务
114+阅读 · 2021年4月7日
中国工业机器视觉产业发展白皮书,31页pdf
专知会员服务
103+阅读 · 2020年11月14日
【KDD2020】自适应多通道图卷积神经网络
专知会员服务
121+阅读 · 2020年7月9日
新时期我国信息技术产业的发展
专知会员服务
71+阅读 · 2020年1月18日
中文知识图谱构建技术以及应用的综述
专知会员服务
314+阅读 · 2019年10月19日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员