项目名称: 气体折射率基准方法测量热力学温度的探索

项目编号: No.51276175

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 能源与动力工程

项目作者: 林鸿

作者单位: 中国计量科学研究院

项目金额: 80万元

中文摘要: 热力学温度是客观世界真实的温度,是制定协议温度标尺(国际温标)基础。本文针对目前热力学温度测量技术相对滞后于物理学的发展、测量周期长和难以实用化的现状,探索建立基于量子物理"从头算"(ab initio)理论和微波谐振的气体折射率基准测温方法,并由此建立以双圆柱微波谐振为基础测量热力学温度的装置。理论上利用电磁场微扰理论建立描述谐振腔中电磁场分布、非理想因素表现特性和修正模型,建立基于深刻物理机制认识和具有广泛适用性的实验方法和测量模型,寻求基础理论和实验研究的创新,进一步在300 K~400 K范围内有针对性地开展实验研究,并且探究这种方法在4 K~1200 K快速准确复现热力学温标的可能性和所需条件,不仅给国际温度计量界提供新的测量方法和独立的数据,为中国在国际温标制定中获得话语权,而且可以解决国防和航天等领域中的温度可靠准确测量问题。

中文关键词: 热力学温度;折射率;微波谐振;氦气;

英文摘要: Thermodynamic temperature is one of the most important physcial parameters related to energy equilibrium and energy exchange. The International Temperature Scale of 1990 (ITS90) was also based on the thermodynamic temperature measurements. Now the thermodynamic temperature measurement methods lag to modern physics development. These old methods were all very time-consuming and difficult to use for industry. In this proposal, we combined the new results from "ab initio" theory and microwave techniques to develop the Primary Gas Refractive Index Thermometry (PGRIT) for measuring thermodynamic temperature. The PGRIT experimental system was also built based on the two-cylinder microwave resonance method. The electromagnetic field theory was used to describe the distribution of the electric and magnetic fileds, and then to develop the correction theory for the non-ideal factors. The thermodynamic temperatures will also be measured by the new method in the range of 300 K ~400 K. The possibility to realize the thermodynamic temperature scale rapidly and accurately in the range of 4 K~1200 K by the PGRIT method was also disscussed. This project can not only present new method for international temperature community and supply the important thermodynamic temperature data by independent experiment method, but also fix the

英文关键词: thermodynamic temperature;refractive index;microwave resonance;helium;

成为VIP会员查看完整内容
0

相关内容

【AAAI 2022】跨模态目标跟踪: 模态感知表示和统一基准
专知会员服务
42+阅读 · 2022年1月6日
中国AI+材料科学产业应用研究报告,41页pdf
专知会员服务
52+阅读 · 2021年12月6日
【博士论文】多视光场光线空间几何模型研究
专知会员服务
21+阅读 · 2021年12月6日
专知会员服务
41+阅读 · 2021年9月7日
专知会员服务
11+阅读 · 2021年7月16日
专知会员服务
36+阅读 · 2021年7月5日
专知会员服务
39+阅读 · 2021年5月12日
【ICML2020】强化学习中基于模型的方法,279页ppt
专知会员服务
43+阅读 · 2020年10月26日
2021年物理学十大进展权威发布,中国团队入选
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
64+阅读 · 2021年6月18日
Arxiv
126+阅读 · 2020年9月6日
小贴士
相关主题
相关VIP内容
【AAAI 2022】跨模态目标跟踪: 模态感知表示和统一基准
专知会员服务
42+阅读 · 2022年1月6日
中国AI+材料科学产业应用研究报告,41页pdf
专知会员服务
52+阅读 · 2021年12月6日
【博士论文】多视光场光线空间几何模型研究
专知会员服务
21+阅读 · 2021年12月6日
专知会员服务
41+阅读 · 2021年9月7日
专知会员服务
11+阅读 · 2021年7月16日
专知会员服务
36+阅读 · 2021年7月5日
专知会员服务
39+阅读 · 2021年5月12日
【ICML2020】强化学习中基于模型的方法,279页ppt
专知会员服务
43+阅读 · 2020年10月26日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员