项目名称: 聚变等离子体条件下钨材料表面微纳尺度损伤研究

项目编号: No.51471092

项目类型: 面上项目

立项/批准年度: 2015

项目学科: 一般工业技术

项目作者: 刘伟

作者单位: 清华大学

项目金额: 85万元

中文摘要: 在等离子体作用下壁材料会产生损伤失效行为,减少壁材料的使用寿命,影响中心等离子体的运行,因此等离子体与壁材料的相互作用是托卡马克聚变装置运行过程中一个必须解决的关键问题之一,尤其在以长脉冲高参数运行的新一代聚变装置中更是如此。本申请针对等离子体作用下壁材料的损伤问题,采用低能、高束流氘等离子体辐照,研究在不同能量、束流和剂量条件下钨材料微纳尺度的损伤行为,认识钨材料微纳尺度的损伤规律,揭示钨材料表面(亚微米、微米)气泡、纳米泡和纳米组织形成机理,阐明表面气泡、纳米泡和纳米组织之间的关联,为壁材料研发和托卡马克装置运行提供理论指导。

中文关键词: 核材料;辐照损伤;微结构

英文摘要: The tokamak wall materials will suffer damages when exposed to plasma, which will reduce the lifetime of wall materials and has negative effects on the operation of plasma, so the plasma wall interactions will be one of the important problems that must be solved during the operation of fusion devices, especially for the new generation devices operating with long pulse and high parameter plasma. This application is aimed to solve the damages problem of wall materials exposed to plasma. We will irradiate the tungsten materials with low temperature high flux Deuterium plasma, and research on the micro- and nano- scale damage behavior of tungsten materials under different ion energy, flux and fluence conditions. The research objectives are to understand the micro- and nano- scale damage law of tungsten,reveal the formation mechanisms of blisters(submicro- and micro scale), nano bubbles, and nano structure, and clarify the relationship between blisters, nano bubbles and nano structure. The result of this research can provide theoretical guidance for the research and design of materials and the operation of tokamak devices.

英文关键词: nuclear materials;irradiation damage;microstructure

成为VIP会员查看完整内容
0

相关内容

【AI+军事】附论文+PPT 《合成环境中的空中实训》
专知会员服务
42+阅读 · 2022年4月17日
《塑造2040年战场的创新技术》欧洲议会研究处,142页pdf
专知会员服务
89+阅读 · 2022年4月14日
《美国太空部队的数字化服务愿景》,17页 pdf
专知会员服务
40+阅读 · 2022年4月4日
中国AI+材料科学产业应用研究报告,41页pdf
专知会员服务
52+阅读 · 2021年12月6日
专知会员服务
41+阅读 · 2021年9月7日
专知会员服务
37+阅读 · 2021年5月9日
专知会员服务
31+阅读 · 2021年5月7日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月19日
小贴士
相关VIP内容
【AI+军事】附论文+PPT 《合成环境中的空中实训》
专知会员服务
42+阅读 · 2022年4月17日
《塑造2040年战场的创新技术》欧洲议会研究处,142页pdf
专知会员服务
89+阅读 · 2022年4月14日
《美国太空部队的数字化服务愿景》,17页 pdf
专知会员服务
40+阅读 · 2022年4月4日
中国AI+材料科学产业应用研究报告,41页pdf
专知会员服务
52+阅读 · 2021年12月6日
专知会员服务
41+阅读 · 2021年9月7日
专知会员服务
37+阅读 · 2021年5月9日
专知会员服务
31+阅读 · 2021年5月7日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员