项目名称: 液态锑金属阳极直接碳燃料电池反应机理研究

项目编号: No.51476092

项目类型: 面上项目

立项/批准年度: 2015

项目学科: 能源与动力工程

项目作者: 史翊翔

作者单位: 清华大学

项目金额: 83万元

中文摘要: 液态锑金属电极直接碳燃料电池能够有效促进固体碳燃料与阳极的接触,将廉价易得的生物质、煤基固体碳燃料化学能高效转化为电能,对缓解我国油气资源紧张现状、促进生物质及煤基固体燃料的高效清洁利用具有重要的科学价值与战略意义。本项目研究液态锑阳极内部反应活性界面生成与迁移机制,揭示界面形貌、阳极层厚度、碳燃料结构、载气种类以及操作条件参数对电池性能特性的综合影响规律,测试碳燃料转化中间产物CO以及碳燃料在液态锑阳极内部的化学反应及电化学反应动力学特性,阐明燃料化学反应、燃料输运以及电极物质输运过程耦合特性。在此基础上建立并全面验证液态锑阳极直接碳燃料电池反应机理模型及基元反应动力学数据库,明确液态锑阳极直接碳燃料电池反应速率控制步骤,掌握基于界面微观结构调控的液态锑阳极性能促进机制及操作条件优化策略,为新型液态锑阳极直接碳燃料电池开发及性能优化奠定一定的理论基础。

中文关键词: 直接碳燃料电池;液态锑金属阳极;反应机理;性能调控;传递过程

英文摘要: Liquid Antimony(Sb)direct carbon fuel cell can effectively improve the contact between solid carbon fuel and the anode to directly convert carbon fuel into power, which is a promising technology for releasing the oil and gas resource rely and promoting the biomass/coal based solid carbon high efficiently conversion and utilizationconversion. In this project, the formation and transportation of the reaction active sites within the liquid antimony anode, as well as the influence of working condition and interface condition on fuel cell operation are studied. The impact mechanism of intermediate product CO during carbon conversion on performance characteristics,the coupling mechanism between instance transport properties and their chemical reactions are explored. Then, the elementary reaction level model and the elementary reaction database for liquid Sb anode direct carbon fuel cell are developed and comprehensively validated to make sure the anodic reaction rate controlling steps can then be clarified by integrating the systematical experimental tests. The proposed project can be the theoretical foundation for the development and optimization of novel liquid Sb anode direct carbon fuel cell.

英文关键词: Direct carbon fuel cell;Liquid antimony anode;Reaction mechanism;Performance regulation;Transport process

成为VIP会员查看完整内容
0

相关内容

ICLR 2022|化学反应感知的分子表示学习
专知会员服务
19+阅读 · 2022年2月10日
专知会员服务
41+阅读 · 2021年9月7日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
39+阅读 · 2021年5月12日
专知会员服务
104+阅读 · 2021年4月7日
专知会员服务
219+阅读 · 2020年8月1日
基于改进卷积神经网络的短文本分类模型
专知会员服务
25+阅读 · 2020年7月22日
ICLR 2022|化学反应感知的分子表示学习
专知
0+阅读 · 2022年2月10日
流程工业数字孪生关键技术探讨
专知
1+阅读 · 2021年4月7日
八一八:我就没搞明白什么叫“纯钴”电池
无人机
34+阅读 · 2019年4月12日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
38+阅读 · 2019年4月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年4月19日
RIS-Assisted Cooperative NOMA with SWIPT
Arxiv
0+阅读 · 2022年4月18日
The Importance of Credo in Multiagent Learning
Arxiv
0+阅读 · 2022年4月15日
小贴士
相关主题
相关VIP内容
ICLR 2022|化学反应感知的分子表示学习
专知会员服务
19+阅读 · 2022年2月10日
专知会员服务
41+阅读 · 2021年9月7日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
39+阅读 · 2021年5月12日
专知会员服务
104+阅读 · 2021年4月7日
专知会员服务
219+阅读 · 2020年8月1日
基于改进卷积神经网络的短文本分类模型
专知会员服务
25+阅读 · 2020年7月22日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
微信扫码咨询专知VIP会员