项目名称: 离子取代与复合探索新型紫外深紫外非线性光学晶体

项目编号: No.51302251

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 一般工业技术

项目作者: 黄洪伟

作者单位: 中国地质大学(北京)

项目金额: 25万元

中文摘要: 本项目主要以硼铍酸盐和硼酸盐为研究对象,重点研究通过离子取代与引入复合阳离子两种结构设计手段调控晶体结构,获得新型紫外深紫外非线性光学晶体材料。对结构设计后的目标化合物采用高温固相合成和液相合成等技术,实现高纯目标化合物的控制合成。结合助溶剂法、一锅法及水热法多种晶体生长方法生长新型化合物单晶。利用单晶结构解析和粉晶结构精修技术确定新型硼(铍)酸盐化合物的晶体结构。通过分析两种结构设计方法对晶体结构的调控规律,总结如何获得优秀的非线性光学晶体。采用粉末倍频技术确定非线性光学晶体的宏观倍频系数,结合理论计算,评估新型非线性光学材料在紫外深紫外区的应用前景。旨在揭示新型硼酸盐及硼铍酸盐化合物的离子组成、晶体结构与非线性光学性能的相互关系与内在作用机制。

中文关键词: 非线性光学晶体;离子取代;复合阳离子;硼酸盐;

英文摘要: The project focus on borates and beryllium borates, mainly research the effects of the two structural design methods of ion substitution and introduction of mixed-cation on crystal structure, and to obtain new UV and deep UV nonlinear optical crystal materials. Using high-temperature solid-phase synthesis and liquid-phase synthesis technologys to achieve the controlling synthesis of the high purity target compounds. Then the new crystals will be grown through various crystal-growth methods, including flux method, one-pot method and hydrothermal method. The crystal structures of new (beryllium) borates can be determined by single-crystal diffraction and powder diffraction refinement. Through analyzing the regulation law of the two structural design methods on crystal structure, we will find out the approach for how to obtain excellent nonlinear optical crystals. The nonlinear optical coefficient can be determined using the powder second harmonic generation (SHG) technology experiment. Combining the theory calculation, the application prospects of new non-linear optical materials in the UV and DUV region will be assessed. Thus, the mutual relations and internal mechanisms of ion composition, crystal structure and nonlinear optical properties of new beryllium borates and borates will be further revealed.

英文关键词: nonlinear optical crystal;ion substitution;mixed-cation;borates;

成为VIP会员查看完整内容
0

相关内容

专知会员服务
50+阅读 · 2021年10月16日
专知会员服务
111+阅读 · 2021年9月22日
专知会员服务
19+阅读 · 2021年9月14日
专知会员服务
101+阅读 · 2021年8月23日
专知会员服务
65+阅读 · 2021年7月4日
专知会员服务
31+阅读 · 2021年5月7日
【ICML2020】多视角对比图表示学习,Contrastive Multi-View GRL
专知会员服务
77+阅读 · 2020年6月11日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
47+阅读 · 2019年9月24日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
38+阅读 · 2019年4月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
10+阅读 · 2020年11月26日
Deep Face Recognition: A Survey
Arxiv
17+阅读 · 2019年2月12日
小贴士
相关VIP内容
专知会员服务
50+阅读 · 2021年10月16日
专知会员服务
111+阅读 · 2021年9月22日
专知会员服务
19+阅读 · 2021年9月14日
专知会员服务
101+阅读 · 2021年8月23日
专知会员服务
65+阅读 · 2021年7月4日
专知会员服务
31+阅读 · 2021年5月7日
【ICML2020】多视角对比图表示学习,Contrastive Multi-View GRL
专知会员服务
77+阅读 · 2020年6月11日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
47+阅读 · 2019年9月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员