项目名称: 半导体胶体量子点与纳米线微腔的耦合及量子比特扩展的研究

项目编号: No.61275060

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 无线电电子学、电信技术

项目作者: 许秀来

作者单位: 中国科学院物理研究所

项目金额: 85万元

中文摘要: 量子比特的扩展是固态量子信息处理重要基础,也是实现量子光学网络的前提,为未来信息技术的发展提供了可能。通常固态量子比特的载体是一个高度相干的二能级单量子态系统,比如单原子,单激子,单自旋等。半导体胶体量子点作为量子比特或者单光子光源的载体主要优点有:能量可控性强、相干控制速度快、可以在室温工作等。本课题主要研究自组装胶体量子点与半导体纳米线微腔的相干耦合及其导致的量子比特的扩展,最终实现一个基于量子点和纳米线耦合的量子光学网络。主要研究内容有:首先研究量子点的发光能级和量子点量子比特的相干控制,测量相干寿命;精确控制量子点与半导体纳米线的位置,研究它们之间的相干耦合,从机理上弄清量子点与纳米线的耦合机制;实现光激发胶体单量子点单光子源在纳米线微腔中的传输及其光、电探测;探索两个或者多个量子在同一根纳米线或者纳米带上的相互作用,以及多量子点量子比特的扩展。

中文关键词: 胶体量子点;纳米线;光学微腔;俄歇效应;回音壁模式

英文摘要: In solid state quantum information processing, scaling-up quantum bits (qubits) is one of the key problems to be solved, which providing the opportunity to achieve the quantum photonic network. So far, highly coherent two-level quantum systems are required to implement solid-state qubits such as single atoms, single excitons and single spins. To implement qubits and single-photon sources, semiconductor colloidal quantum dots have many advantages, such as energy can be easily controlled, ultrafast coherent control, and can be working at room temperature. In this project, we will investigate the coupling between the colloidal quantum dots and semiconductor nanowire/nanobelt cavity, to scale up of quantum bits and achieve a quantum dot-nanowire based photonic network. In detail, we will investigate the luminescent energy levels of colloidal quantum dots and coherent control of the quantum dot qubit to characterize the decoherence time. By controlling the quantum dot and nanowire spatial position precisely, coherent coupling between quantum dots and nanowire will be examined. The coupling mechanism between quantum dots and nanowires will be analyzed both experimentally and theoretically, to reveal the decoherence mechanism of this hybrid system. The single photons from single quantum dots in the nanowire cavity will

英文关键词: colloidal quantum dots;nanowires;optical microcavity;Auger effect;Whispering Gallery Mode

成为VIP会员查看完整内容
0

相关内容

专知会员服务
50+阅读 · 2021年10月16日
2021年全球量子信息发展报告, 32页pdf
专知会员服务
78+阅读 · 2021年5月14日
【经典书】信息论原理,774页pdf
专知会员服务
240+阅读 · 2021年3月22日
【经典书】精通Linux,394页pdf
专知会员服务
89+阅读 · 2021年2月19日
量子信息技术研究现状与未来
专知会员服务
38+阅读 · 2020年10月11日
微软发布量子计算最新成果,证实拓扑量子比特的物理机理
微软研究院AI头条
0+阅读 · 2022年3月18日
ECCV 2018 | Bi-box行人检测:‘行人遮挡’为几何?
极市平台
13+阅读 · 2018年9月30日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
22+阅读 · 2022年2月4日
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
小贴士
相关VIP内容
专知会员服务
50+阅读 · 2021年10月16日
2021年全球量子信息发展报告, 32页pdf
专知会员服务
78+阅读 · 2021年5月14日
【经典书】信息论原理,774页pdf
专知会员服务
240+阅读 · 2021年3月22日
【经典书】精通Linux,394页pdf
专知会员服务
89+阅读 · 2021年2月19日
量子信息技术研究现状与未来
专知会员服务
38+阅读 · 2020年10月11日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员