项目名称: 化学气相沉积生长厘米级高迁移率石墨烯单晶的研究

项目编号: No.11304337

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 数理科学和化学

项目作者: 吴天如

作者单位: 中国科学院上海微系统与信息技术研究所

项目金额: 30万元

中文摘要: 石墨烯作为具有巨大应用潜力的新型材料,是当前物理、化学和材料等研究和应用领域的热点课题。然而相比于成熟的晶圆级单晶硅的制备工艺,目前高质量和大尺寸石墨烯单晶的制备尚无法实现。本项目提出采用聚苯乙烯作为固态碳源,采用化学气相沉积的方法在金属基底上培育出厘米级高迁移率石墨烯六角单晶畴。通过控制不同生长阶段的反应基元的浓度和平均自由程,以及多步生长方式达到控制石墨烯单晶形核密度的控制和晶畴持续快速生长的目的。同时结合第一性原理计算和化学气相反应动力学理论建立石墨烯单晶畴培育过程中的动力学模型,并探讨影响大尺寸石墨烯单晶畴生长的微观机理。在实现厘米级石墨烯单晶制备和催化生长机制的系统化分析的基础上开展石墨烯电学输运特性及场效应的研究。这项研究为性能优良且成本低廉的新一代碳基微纳电子器件的研制与开发提供了关键技术和实验基础。

中文关键词: 石墨烯;单晶;铜镍合金;化学气相沉积;晶圆

英文摘要: Graphene, a new material with great application potential, has stimulated intense research interest owing to its unique physical and chemical properties. Fabrication techniques for wafer scale graphene are already available. However, the quality of graphene in wafer scale differs from that of normal silicon as the fabrication of high quality and large size graphene single crystal preparation is s still a great challenge. In this study, we demonstrated a simple but efficient strategy to synthesize centimeter-sized graphene single crystal grains by regulating the supply of reactants in chemical vapor deposition process. The gradual increase in the temperature of carbon source and the flow rate of hydrogen were adapted to control the nucleation density andt drive the continuous growth of graphene grains. Meanwhile, the first principle calculations and chemical vapor reaction kinetics were introduced to set up the ?uid dynamics mechanism to explain the single crystal graphene growth process. The graphene-based back-gate ?eld-effect transistors (FETs) were fabricated on 300 nm SiO2/Si substrates to investigate the electronic properties of hexagonal millimeter-sized graphene domains. The considerable research on graphene has motivated the scalable production of high-quality graphene and graphene devices.

英文关键词: graphene;single crystal;Ni-Cu alloy;chemical vapor deposition;wafer

成为VIP会员查看完整内容
0

相关内容

《信息安全技术边缘计算安全技术要求》国家标准意见稿
《华为云数据库在金融行业的创新与探索》华为26页PPT
专知会员服务
14+阅读 · 2022年3月23日
《人工智能在化学领域的应用全景》白皮书
专知会员服务
36+阅读 · 2022年1月22日
智能无人集群系统发展白皮书
专知会员服务
311+阅读 · 2021年12月20日
中国AI+材料科学产业应用研究报告,41页pdf
专知会员服务
58+阅读 · 2021年12月6日
专知会员服务
43+阅读 · 2021年9月7日
专知会员服务
34+阅读 · 2021年5月7日
专知会员服务
114+阅读 · 2021年4月7日
专知会员服务
52+阅读 · 2020年12月28日
Science:量子计算机成功创造时间晶体
学术头条
0+阅读 · 2021年11月20日
手把手教你,19步从石头里抠出一块CPU
新智元
0+阅读 · 2021年11月16日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
高分子材料领域的十大院士!
材料科学与工程
20+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
RIS-Assisted Cooperative NOMA with SWIPT
Arxiv
0+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月17日
小贴士
相关主题
相关VIP内容
《信息安全技术边缘计算安全技术要求》国家标准意见稿
《华为云数据库在金融行业的创新与探索》华为26页PPT
专知会员服务
14+阅读 · 2022年3月23日
《人工智能在化学领域的应用全景》白皮书
专知会员服务
36+阅读 · 2022年1月22日
智能无人集群系统发展白皮书
专知会员服务
311+阅读 · 2021年12月20日
中国AI+材料科学产业应用研究报告,41页pdf
专知会员服务
58+阅读 · 2021年12月6日
专知会员服务
43+阅读 · 2021年9月7日
专知会员服务
34+阅读 · 2021年5月7日
专知会员服务
114+阅读 · 2021年4月7日
专知会员服务
52+阅读 · 2020年12月28日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员