项目名称: 手性有机-无机介孔材料的微环境调控

项目编号: No.21273226

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 数理科学和化学

项目作者: 杨启华

作者单位: 中国科学院大连化学物理研究所

项目金额: 80万元

中文摘要: 手性化合物是手性科学研究的物质基础,在医药、食品、香料等工业具有重要的应用背景。多相手性催化合成被认为是获得手性化合物的最经济、最合理可行的方法之一。然而,多相手性催化普遍存在活性和对映选择性不高的难题。手性分子催化剂的负载是制备多相手性催化剂的重要途径。负载后手性分子催化剂微环境的改变是造成多相手性催化剂活性和对映选择性降低的因素之一。我们拟以介孔氧化硅材料为载体,在其纳米孔道中引入不同的功能基团,调控介孔材料纳米孔道微环境;通过嫁接或封装的方法将手性分子催化剂引入到具有不同微环境的纳米孔道中,实现负载手性分子催化剂所处的微环境的修饰;在手性氢化反应中研究纳米孔道微环境对手性分子催化剂活性和对映选择性的影响规律;解决目前负载型手性催化剂面临的活性和对映选择性不高的难题,发展具有高活性和高对映选择性的多相手性催化新体系。

中文关键词: 多相手性催化;微环境调控;介孔氧化硅;杂化材料;表面修饰

英文摘要: The chiral chemicals are very important in our daily life and have wide applications in pharmaceutical industry. Heterogeneous asymmetric catalysis has been regarded as one of the most efficient and economical approach for the production of chiral chemicals. However, most solid chrial catalysts exhibit low activity and enantioselectivity in asymmetric catalysis. The immobilization of molecular catalysts on the solid surface is widely applied, however, is often detrimental to the catalytic performance because of the altered microenvironment, structure and chemical properties of the molecular catalyst after immobilization. In this program, we are aiming to increase the catalytic performance of the solid chiral catalysts by modifying the microenvironment of the nanochannels of mesoporous silicas where the chiral molecular catalysts stay. The surface properties of the mesoporous silicas could be adjusted by incorporating different kinds of organic groups into the nanochannels. The grating, co-condensation and encapsulation method could be employed for introducing the chiral molecular catalysts onto the mesoporous silicas with different microenvironment. In the asymmetric hydrogenation reactions, the relation of the microenvironment and the catalytic performance of the solid chiral catalysts should be established. Ou

英文关键词: heterogeneous asymmetric catalysis;microenvironment engineering;mesoporous silicas;hybrid materials;surface modification

成为VIP会员查看完整内容
0

相关内容

中国AI+材料科学产业应用研究报告,41页pdf
专知会员服务
52+阅读 · 2021年12月6日
专知会员服务
54+阅读 · 2021年9月23日
专知会员服务
133+阅读 · 2021年9月16日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
65+阅读 · 2021年7月4日
专知会员服务
31+阅读 · 2021年5月7日
智慧城市白皮书(2021年)
专知会员服务
175+阅读 · 2021年4月24日
《人工智能安全框架(2020年)》白皮书,68页pdf
专知会员服务
161+阅读 · 2021年1月9日
高分子材料领域的十大院士!
材料科学与工程
18+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
The Importance of Credo in Multiagent Learning
Arxiv
0+阅读 · 2022年4月15日
小贴士
相关主题
相关VIP内容
中国AI+材料科学产业应用研究报告,41页pdf
专知会员服务
52+阅读 · 2021年12月6日
专知会员服务
54+阅读 · 2021年9月23日
专知会员服务
133+阅读 · 2021年9月16日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
65+阅读 · 2021年7月4日
专知会员服务
31+阅读 · 2021年5月7日
智慧城市白皮书(2021年)
专知会员服务
175+阅读 · 2021年4月24日
《人工智能安全框架(2020年)》白皮书,68页pdf
专知会员服务
161+阅读 · 2021年1月9日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员