项目名称: 金刚石与粘结剂界面设计及其对地质钻头性能的影响机制

项目编号: No.41502344

项目类型: 青年科学基金项目

立项/批准年度: 2016

项目学科: 天文学、地球科学

项目作者: 孟庆南

作者单位: 吉林大学

项目金额: 20万元

中文摘要: 孕镶金刚石钻头中金刚石主要靠粘结剂金属固定在胎体中,金刚石与粘结剂的界面状态直接决定钻头性能。单纯改变粘结剂合金成分很难同时兼顾胎体性能和胎体对金刚石的把持力,因此通过金刚石表面镀层的方法设计金刚石与粘结剂界面成分和结构就成为目前的研究热点。目前常在金刚石表面镀镍(Ni)和钛(Ti),在镀层与金刚石之间形成碳化物界面从而增加界面强度,但镀层与粘结剂之间界面的成分与化学键态则往往被忽略,界面成分、结构和化学键态对孕镶金刚石钻头性能的影响机制仍缺少研究。硼(B)可以与金刚石形成更为牢固的共价键连接,且与粘结剂中常见的铁(Fe)、钴(Co)、Ni等成分形成稳定的化合物,因此可以预期使用硼化物镀层改善金刚石与粘结剂界面可以更好的提高金刚石与胎体的结合力。本项目将以目前常用的铜基和铁基粘结剂合金为研究对象,通过金刚石表面镀硼化物的方法研究并建立界面成分、结构和化学键态对孕镶金刚石钻头性能的影响机制。

中文关键词: 金刚石钻头;钻头材料;金刚石改性;界面强度;增强机制

英文摘要: Diamond particles are fixed by binder alloy matrix in impregnated diamond drilling bit. The performance of impregnated diamond drilling bit is dependent on the interface strength between diamond and binder alloy matrix. It is difficult to take into account both interface strength and carcass performances. Therefore, more researchers force on the improvement of interface state using coated diamond particles, such as titanium or nickel coated diamond particles. However, the influence of interface composition and chemical bond state between binder alloy matrix and the coating on drilling bit performances are always ignored. It should be noted that boron can bond to diamond by covalent bond and to binder alloy matrix by electrovalent bond, resulting in a stronger interface bonding. Thus, boron coated diamond is a promising material for improving interface strength between diamond and bonder alloy matrix. In this project, we plan to design and improvement the interface between bonder alloy matrix (including copper alloys and iron alloys) and diamond using boron and boride coated diamond particles, for investigating the influence and enhancement mechanism of interface state, composition and chemical bond state on drilling bit performances.

英文关键词: Diamond drilling bit;Drilling bit materials;Diamond modification;Interface strength ;Enhancement mechanism

成为VIP会员查看完整内容
0

相关内容

ICLR 2022|化学反应感知的分子表示学习
专知会员服务
21+阅读 · 2022年2月10日
专知会员服务
113+阅读 · 2021年9月22日
专知会员服务
43+阅读 · 2021年9月7日
专知会员服务
34+阅读 · 2021年5月7日
【CVPR2021】通道注意力的高效移动网络设计
专知会员服务
20+阅读 · 2021年4月27日
专知会员服务
23+阅读 · 2021年3月9日
专知会员服务
58+阅读 · 2021年2月12日
《神经架构搜索NAS》最新进展综述
专知会员服务
57+阅读 · 2020年8月12日
硬件产品开发:外包五要素和外包地图
人人都是产品经理
0+阅读 · 2022年4月17日
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
重拾面向对象软件设计
阿里技术
0+阅读 · 2021年11月23日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年5月4日
Arxiv
0+阅读 · 2022年5月3日
小贴士
相关主题
相关VIP内容
ICLR 2022|化学反应感知的分子表示学习
专知会员服务
21+阅读 · 2022年2月10日
专知会员服务
113+阅读 · 2021年9月22日
专知会员服务
43+阅读 · 2021年9月7日
专知会员服务
34+阅读 · 2021年5月7日
【CVPR2021】通道注意力的高效移动网络设计
专知会员服务
20+阅读 · 2021年4月27日
专知会员服务
23+阅读 · 2021年3月9日
专知会员服务
58+阅读 · 2021年2月12日
《神经架构搜索NAS》最新进展综述
专知会员服务
57+阅读 · 2020年8月12日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员