项目名称: 面向Web信息的知识融合关键技术研究
项目编号: No.61272205
项目类型: 面上项目
立项/批准年度: 2013
项目学科: 自动化技术、计算机技术
项目作者: 刘清堂
作者单位: 华中师范大学
项目金额: 80万元
中文摘要: 针对Web信息集成和服务中存在的信息冗余和认知过载的问题,项目结合元知识理论,研究面向用户需求的多维度、多粒度、动态的Web信息语义融合方法。首先,项目拟从元知识角度对主题图进行拓扑,研究支持多粒度知识表征的知识逻辑组织模型及其机器表示方法;在此基础上,结合知识元内部表征和多类分类模型,进一步研究知识元抽取与语义关系挖掘的新方法,以克服知识元关联分布中存在的长距离依赖性与数据稀疏性问题;此外,研究基于上下文和加权树结构的知识元度量方法,并在此基础上实现基于主题图的知识融合算法,以克服信息融合中存在的语义冲突,降低知识的冗余度;最后,项目研究基于信息加工模型的用户兴趣度感知与计算方法,并与遗传算法相结合,以实现知识资源的动态聚合与个性化服务。项目的研究成果可以应用于军事、商业、金融业、医学、数字教育及信息服务等领域,具有广阔的应用前景和理论价值。
中文关键词: 知识元;领域本体库;知识元挖掘;知识聚合;资源推荐
英文摘要: This project aims at the information redundancy and cognition overload which exist in the process of web information fusion and service. So combined with the meta-knowledge theory, we explores new knowledge fusion methods to provide users with multi-dimensional, multi-granularity and dynamic web knowledge service. First, we expand the topic model with knowledge element to realize a knowledge logical organization model which can support multi-granularity knowledge representation. On this basis, with the help of the internal characterization of knowledge element and multiclass classification model, we have the further study on new methods of knowledge element extraction and semantic relation mining. These new methods can overcome the long distance dependency and data sparseness in knowledge element distribution. Besides this, we propose a knowledge element measure method based on context and the weighted tree structure. And based on this, we design a knowledge fusion algorithm based on topic map to solve the semantic conflicts that exist in information fusion, and reduce the redundancy of knowledge. Finally, we introduce the information processing model to characterize and estimate the user interest. And combined with genetic algorithm, we can achieve the dynamic update and integration of knowledge resources, and
英文关键词: knowledge element;domain ontology;konwledge element mining;knowledge aggregation;resource recommendation