项目名称: 纳米强韧化界面层对碳纤维复合材料界面性能与疲劳特性的协同强化机制

项目编号: No.U1362108

项目类型: 联合基金项目

立项/批准年度: 2014

项目学科: 化学工业

项目作者: 徐志伟

作者单位: 天津工业大学

项目金额: 60万元

中文摘要: 碳纤维增强树脂基复合材料已成为国防及民用领域的关键材料。本项目针对“强界面结合提高复合材料界面性能的同时削弱抗疲劳特性”的问题,以碳纤维/环氧树脂体系为研究对象,将小粒径、面内刻蚀和酸酐功能化的石墨烯纳米片引入环氧杂化浆料,再将涂覆该浆料的碳纤维与环氧树脂复合,使碳纤维表面物理吸附的石墨烯扩散进入纤维周围的树脂微区,在纤维与基体之间构筑模量呈梯度变化的界面过渡层,从减少界面应力集中的角度实现复合材料界面性能和抗疲劳特性的协同提高。采用有限元方法设计界面层的基本性质,并结合过渡层理论调控界面层结构,研究界面层的形成机理及其精细结构调控方法,探讨界面层微观结构与碳纤维/环氧界面性能、抗疲劳性能之间的构效关系,揭示界面层对复合材料界面性能与疲劳特性的协同强化机制。项目将为多尺度、多层次高性能复合材料的结构设计提供理论依据和实验基础,对于提升碳纤维增强树脂基复合材料的应用性和可靠性具有重要意义。

中文关键词: 多尺度复合材料;界面过渡层;碳纤维;低维碳纳米材料;抗疲劳

英文摘要: Carbon fiber reinforced composites have been used as one of key materials in the national defense and civil field. The improvement of interfacial bonding strength increases the interface properties of composites but decreases anti-fatigue ability of composites. As a result, the synergetic enhancement of interfacial and anti-fatigue properties has been a great challenge for performance-enhancing design of composites. We will coat the sizing containing the etched graphene nanosheets on the surface of carbon fibers, and combine the carbon fibers and epoxy to prepare the multi-composites. It is expected that the graphene nanosheets absorbed on fiber surface would diffuse into the matrix, the interface layer with gradient modulus is formed between fiber and matrix, and the interfacial and anti-fatigue properties are both improved, which results from reducing the interfacial stress concentration. In this research, the structure of interface layer will be designed, the formation mechanisms and structural adjustment methods of interface layer will be investigated and the relations among interlayer microstructure, carbon fiber/epoxy interface properties and composite fatigue characteristics will be studied to reveal the effect mechanisms of interlayer structure on the fatigue behavior. This project would contribute theo

英文关键词: multi-scale composites;interface transition layer;carbon fibers;low-dimensional carbon nanomaterials;antifatigue

成为VIP会员查看完整内容
0

相关内容

【WWW2022】TaxoEnrich:通过结构语义表示的自监督分类法补全
前沿综述:集体智能与深度学习的交叉进展
专知会员服务
74+阅读 · 2022年2月6日
【AAAI2022】用于视觉常识推理的场景图增强图像-文本学习
专知会员服务
50+阅读 · 2021年12月20日
专知会员服务
43+阅读 · 2021年9月7日
专知会员服务
34+阅读 · 2021年5月7日
专知会员服务
80+阅读 · 2020年8月4日
联想拯救者Y7000P 2022 体验:变薄了,也变强了
ZEALER订阅号
0+阅读 · 2022年4月7日
联想拯救者 Y90&Y700 上手:拯救游戏手机和平板?
ZEALER订阅号
0+阅读 · 2022年2月28日
Android Studio 新特性详解
谷歌开发者
0+阅读 · 2022年1月19日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
高分子材料领域的十大院士!
材料科学与工程
20+阅读 · 2018年9月18日
【材料课堂】EBSD晶体学织构基础及数据处理
材料科学与工程
34+阅读 · 2018年7月14日
【无人机】无人机的自主与智能控制
产业智能官
52+阅读 · 2017年11月27日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Synthesizing Informative Training Samples with GAN
Arxiv
0+阅读 · 2022年4月15日
Arxiv
12+阅读 · 2019年3月14日
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
小贴士
相关主题
相关资讯
联想拯救者Y7000P 2022 体验:变薄了,也变强了
ZEALER订阅号
0+阅读 · 2022年4月7日
联想拯救者 Y90&Y700 上手:拯救游戏手机和平板?
ZEALER订阅号
0+阅读 · 2022年2月28日
Android Studio 新特性详解
谷歌开发者
0+阅读 · 2022年1月19日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
高分子材料领域的十大院士!
材料科学与工程
20+阅读 · 2018年9月18日
【材料课堂】EBSD晶体学织构基础及数据处理
材料科学与工程
34+阅读 · 2018年7月14日
【无人机】无人机的自主与智能控制
产业智能官
52+阅读 · 2017年11月27日
微信扫码咨询专知VIP会员