项目名称: 复杂地面行驶环境的中远距离三维毫米波传感器研究

项目编号: No.90820004

项目类型: 专项基金项目

立项/批准年度: 2009

项目学科: 交通运输

项目作者: 刘传才

作者单位: 南京理工大学

项目金额: 50万元

中文摘要: 险性调频连续波(LFMCW)体制的毫米波雷达传感器是实现无人驾驶车辆的有效途径。我们对复杂地面行驶环境中的三维毫米波传感器系统与算法设计进行了深入的研究。首先,研究并设计了采用LFMCW体制的毫米波段雷达传感器硬件系统,包括频率电扫描天线、连续波体制射频组件、高处理性能的雷达信号处理器、基于ARM920T内核的雷达总控系统以及目标显示器;在算法方面,设计了LFMCW体制雷达对应了匹配滤波算法,恒虚警(CFAR)检测算法,目标凝聚算法和跟踪算法,从而提高了传感器在复杂环境中对目标的探测能力,降低了强地物杂波引起的虚警概率,提高了目标方位、距离测量精度和跟踪精度,并将算法在硬件系统上实现。我们完成了LFMCW雷达整机安装、调试和外场实验,通过实验和实测数据验证了该毫米波传感器具有良好的探测能力和虚警控制能力,且辐射功率较小,适合民用。

中文关键词: 频率电扫描天线;毫米波段射频组件;匹配滤波;恒虚警检测;目标跟踪

英文摘要: The millimeter-band linear frequency modulated continuous wave (LFMCW) radar sensor is an effective way to implement autonomous unmanned vehicle. We studied deeply the system of LFMCW radars for complex vehicle-driving environments. Firstly, a millimeter-band LFMCW radar hardware system is designed and manufactured, including frequency-scanning antennas, millimeter-band RF components, a radar signal processor with a high computation performance, a radar master control system based on the ARM920T core and a target display system. In order to increase detection probability in multi-target situation, lower false alarm rates caused by strong ground clutter returns and increase detecting and tracking precision of targets, the algorithms of match filtering, constant-false-alarm-rate (CFAR) detecting, target dots clotting and tracking are researched, designed and implemented in the radar hardware. The LFMCW radar system is equipped, debugged and tested in the complex clutter environments. The experiment results show that the designed millimeter-band LFMCW radar achieves a high detection performance and a robust false alarm control capacity. With a low radiated power, the LFMCW radar is suitable for civil use.

英文关键词: frequency-scanning antenna; millimeter-band RF component; match filtering; CFAR detection; target tracking

成为VIP会员查看完整内容
0

相关内容

《5G 毫米波赋能 8K 视频制作》未来移动通信论坛
专知会员服务
11+阅读 · 2022年4月15日
《5G/6G毫米波测试技术白皮书》未来移动通信论坛
专知会员服务
14+阅读 · 2022年4月15日
6G物理层AI关键技术白皮书(2022)
专知会员服务
40+阅读 · 2022年3月21日
数据中心传感器技术应用 白皮书
专知会员服务
38+阅读 · 2021年11月13日
专知会员服务
37+阅读 · 2021年9月7日
专知会员服务
10+阅读 · 2021年8月8日
最快 5 年,我们就能实现自动驾驶了?
ZEALER订阅号
0+阅读 · 2021年12月10日
Nest Hub 的非接触式睡眠监测
TensorFlow
1+阅读 · 2021年5月21日
自动驾驶高精度定位如何在复杂环境进行
智能交通技术
18+阅读 · 2019年9月27日
【泡泡点云时空-PCL源码解读】PCL中的点云配准方法
泡泡机器人SLAM
67+阅读 · 2019年6月16日
自动驾驶车载激光雷达技术现状分析
智能交通技术
16+阅读 · 2019年4月9日
基于几何特征的激光雷达地面点云分割
泡泡机器人SLAM
14+阅读 · 2018年4月1日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
35+阅读 · 2021年8月2日
Arxiv
64+阅读 · 2021年6月18日
Arxiv
32+阅读 · 2021年3月8日
Arxiv
38+阅读 · 2020年3月10日
小贴士
相关资讯
最快 5 年,我们就能实现自动驾驶了?
ZEALER订阅号
0+阅读 · 2021年12月10日
Nest Hub 的非接触式睡眠监测
TensorFlow
1+阅读 · 2021年5月21日
自动驾驶高精度定位如何在复杂环境进行
智能交通技术
18+阅读 · 2019年9月27日
【泡泡点云时空-PCL源码解读】PCL中的点云配准方法
泡泡机器人SLAM
67+阅读 · 2019年6月16日
自动驾驶车载激光雷达技术现状分析
智能交通技术
16+阅读 · 2019年4月9日
基于几何特征的激光雷达地面点云分割
泡泡机器人SLAM
14+阅读 · 2018年4月1日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
微信扫码咨询专知VIP会员