Aspect based sentiment analysis (ABSA) can provide more detailed information than general sentiment analysis, because it aims to predict the sentiment polarities of the given aspects or entities in text. We summarize previous approaches into two subtasks: aspect-category sentiment analysis (ACSA) and aspect-term sentiment analysis (ATSA). Most previous approaches employ long short-term memory and attention mechanisms to predict the sentiment polarity of the concerned targets, which are often complicated and need more training time. We propose a model based on convolutional neural networks and gating mechanisms, which is more accurate and efficient. First, the novel Gated Tanh-ReLU Units can selectively output the sentiment features according to the given aspect or entity. The architecture is much simpler than attention layer used in the existing models. Second, the computations of our model could be easily parallelized during training, because convolutional layers do not have time dependency as in LSTM layers, and gating units also work independently. The experiments on SemEval datasets demonstrate the efficiency and effectiveness of our models.

12
下载
关闭预览

相关内容

狭义的情感分析(sentiment analysis)是指利用计算机实现对文本数据的观点、情感、态度、情绪等的分析挖掘。广义的情感分析则包括对图像视频、语音、文本等多模态信息的情感计算。简单地讲,情感分析研究的目标是建立一个有效的分析方法、模型和系统,对输入信息中某个对象分析其持有的情感信息,例如观点倾向、态度、主观观点或喜怒哀乐等情绪表达。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等

Target-Based Sentiment Analysis aims to detect the opinion aspects (aspect extraction) and the sentiment polarities (sentiment detection) towards them. Both the previous pipeline and integrated methods fail to precisely model the innate connection between these two objectives. In this paper, we propose a novel dynamic heterogeneous graph to jointly model the two objectives in an explicit way. Both the ordinary words and sentiment labels are treated as nodes in the heterogeneous graph, so that the aspect words can interact with the sentiment information. The graph is initialized with multiple types of dependencies, and dynamically modified during real-time prediction. Experiments on the benchmark datasets show that our model outperforms the state-of-the-art models. Further analysis demonstrates that our model obtains significant performance gain on the challenging instances under multiple-opinion aspects and no-opinion aspect situations.

0
8
下载
预览

Aspect-term level sentiment analysis (ATSA) is a fine-grained task in sentiment classification. It aims at extracting and summarizing the sentiment polarity towards a given aspect phrase from a sentence. Most existing studies combined various neural network models with a delicately carved attention mechanism to generate refined representations of sentences for better predictions. However, they were inadequate to capture correlations between aspects and sentiments. Moreover, the annotated aspect term might be unavailable in real-world scenarios which may challenge the existing methods to give correct forecasting. In this paper, we propose a capsule network based model named CAPSAR (CAPsule network with Sentiment-Aspect Reconstruction) to improve aspect-term level sentiment analysis. CAPSAR adopts a hierarchical structure of capsules and learns interactive patterns between aspects and sentiments through packaged sentiment-aspect reconstruction. Capsules in CAPSAR are capable of communicating with other capsules through a sharing-weight routing algorithm. Experiments on three ATSA benchmarks demonstrate the superiority of our model, and CAPSAR can detect the potential aspect terms from sentences by de-capsulizing the vectors in capsules when aspect terms are unknown.

0
4
下载
预览

Aspect-based sentiment analysis (ABSA) is to predict the sentiment polarity towards a particular aspect in a sentence. Recently, this task has been widely addressed by the neural attention mechanism, which computes attention weights to softly select words for generating aspect-specific sentence representations. The attention is expected to concentrate on opinion words for accurate sentiment prediction. However, attention is prone to be distracted by noisy or misleading words, or opinion words from other aspects. In this paper, we propose an alternative hard-selection approach, which determines the start and end positions of the opinion snippet, and selects the words between these two positions for sentiment prediction. Specifically, we learn deep associations between the sentence and aspect, and the long-term dependencies within the sentence by leveraging the pre-trained BERT model. We further detect the opinion snippet by self-critical reinforcement learning. Especially, experimental results demonstrate the effectiveness of our method and prove that our hard-selection approach outperforms soft-selection approaches when handling multi-aspect sentences.

0
5
下载
预览

Due to their inherent capability in semantic alignment of aspects and their context words, attention mechanism and Convolutional Neural Networks (CNNs) are widely applied for aspect-based sentiment classification. However, these models lack a mechanism to account for relevant syntactical constraints and long-range word dependencies, and hence may mistakenly recognize syntactically irrelevant contextual words as clues for judging aspect sentiment. To tackle this problem, we propose to build a Graph Convolutional Network (GCN) over the dependency tree of a sentence to exploit syntactical information and word dependencies. Based on it, a novel aspect-specific sentiment classification framework is raised. Experiments on three benchmarking collections illustrate that our proposed model has comparable effectiveness to a range of state-of-the-art models, and further demonstrate that both syntactical information and long-range word dependencies are properly captured by the graph convolution structure.

0
10
下载
预览

Aspect level sentiment classification aims to identify the sentiment expressed towards an aspect given a context sentence. Previous neural network based methods largely ignore the syntax structure in one sentence. In this paper, we propose a novel target-dependent graph attention network (TD-GAT) for aspect level sentiment classification, which explicitly utilizes the dependency relationship among words. Using the dependency graph, it propagates sentiment features directly from the syntactic context of an aspect target. In our experiments, we show our method outperforms multiple baselines with GloVe embeddings. We also demonstrate that using BERT representations further substantially boosts the performance.

0
8
下载
预览

Sentiment analysis is a widely studied NLP task where the goal is to determine opinions, emotions, and evaluations of users towards a product, an entity or a service that they are reviewing. One of the biggest challenges for sentiment analysis is that it is highly language dependent. Word embeddings, sentiment lexicons, and even annotated data are language specific. Further, optimizing models for each language is very time consuming and labor intensive especially for recurrent neural network models. From a resource perspective, it is very challenging to collect data for different languages. In this paper, we look for an answer to the following research question: can a sentiment analysis model trained on a language be reused for sentiment analysis in other languages, Russian, Spanish, Turkish, and Dutch, where the data is more limited? Our goal is to build a single model in the language with the largest dataset available for the task, and reuse it for languages that have limited resources. For this purpose, we train a sentiment analysis model using recurrent neural networks with reviews in English. We then translate reviews in other languages and reuse this model to evaluate the sentiments. Experimental results show that our robust approach of single model trained on English reviews statistically significantly outperforms the baselines in several different languages.

0
10
下载
预览

We propose a novel approach to multimodal sentiment analysis using deep neural networks combining visual analysis and natural language processing. Our goal is different than the standard sentiment analysis goal of predicting whether a sentence expresses positive or negative sentiment; instead, we aim to infer the latent emotional state of the user. Thus, we focus on predicting the emotion word tags attached by users to their Tumblr posts, treating these as "self-reported emotions." We demonstrate that our multimodal model combining both text and image features outperforms separate models based solely on either images or text. Our model's results are interpretable, automatically yielding sensible word lists associated with emotions. We explore the structure of emotions implied by our model and compare it to what has been posited in the psychology literature, and validate our model on a set of images that have been used in psychology studies. Finally, our work also provides a useful tool for the growing academic study of images - both photographs and memes - on social networks.

0
19
下载
预览

Current methods for video analysis often extract frame-level features using pre-trained convolutional neural networks (CNNs). Such features are then aggregated over time e.g., by simple temporal averaging or more sophisticated recurrent neural networks such as long short-term memory (LSTM) or gated recurrent units (GRU). In this work we revise existing video representations and study alternative methods for temporal aggregation. We first explore clustering-based aggregation layers and propose a two-stream architecture aggregating audio and visual features. We then introduce a learnable non-linear unit, named Context Gating, aiming to model interdependencies among network activations. Our experimental results show the advantage of both improvements for the task of video classification. In particular, we evaluate our method on the large-scale multi-modal Youtube-8M v2 dataset and outperform all other methods in the Youtube 8M Large-Scale Video Understanding challenge.

0
3
下载
预览

Deep learning has emerged as a powerful machine learning technique that learns multiple layers of representations or features of the data and produces state-of-the-art prediction results. Along with the success of deep learning in many other application domains, deep learning is also popularly used in sentiment analysis in recent years. This paper first gives an overview of deep learning and then provides a comprehensive survey of its current applications in sentiment analysis.

0
23
下载
预览

This project addresses the problem of sentiment analysis in twitter; that is classifying tweets according to the sentiment expressed in them: positive, negative or neutral. Twitter is an online micro-blogging and social-networking platform which allows users to write short status updates of maximum length 140 characters. It is a rapidly expanding service with over 200 million registered users - out of which 100 million are active users and half of them log on twitter on a daily basis - generating nearly 250 million tweets per day. Due to this large amount of usage we hope to achieve a reflection of public sentiment by analysing the sentiments expressed in the tweets. Analysing the public sentiment is important for many applications such as firms trying to find out the response of their products in the market, predicting political elections and predicting socioeconomic phenomena like stock exchange. The aim of this project is to develop a functional classifier for accurate and automatic sentiment classification of an unknown tweet stream.

0
3
下载
预览
小贴士
相关论文
Jointly Modeling Aspect and Sentiment with Dynamic Heterogeneous Graph Neural Networks
Shu Liu,Wei Li,Yunfang Wu,Qi Su,Xu Sun
8+阅读 · 2020年4月14日
Mengting Hu,Shiwan Zhao,Honglei Guo,Renhong Cheng,Zhong Su
5+阅读 · 2019年9月25日
Chen Zhang,Qiuchi Li,Dawei Song
10+阅读 · 2019年9月8日
Syntax-Aware Aspect Level Sentiment Classification with Graph Attention Networks
Binxuan Huang,Kathleen M. Carley
8+阅读 · 2019年9月5日
Ethem F. Can,Aysu Ezen-Can,Fazli Can
10+阅读 · 2018年6月8日
Anthony Hu,Seth Flaxman
19+阅读 · 2018年5月25日
Antoine Miech,Ivan Laptev,Josef Sivic
3+阅读 · 2018年3月5日
Lei Zhang,Shuai Wang,Bing Liu
23+阅读 · 2018年1月24日
Afroze Ibrahim Baqapuri
3+阅读 · 2015年9月14日
相关VIP内容
强化学习最新教程,17页pdf
专知会员服务
51+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
42+阅读 · 2019年10月9日
相关资讯
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
10+阅读 · 2018年12月24日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
7+阅读 · 2018年5月6日
Linguistically Regularized LSTMs for Sentiment Classification
黑龙江大学自然语言处理实验室
7+阅读 · 2018年5月4日
【推荐】用TensorFlow实现LSTM社交对话股市情感分析
机器学习研究会
9+阅读 · 2018年1月14日
Simple Recurrent Unit For Sentence Classification
哈工大SCIR
6+阅读 · 2017年11月29日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
16+阅读 · 2017年11月5日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
【推荐】RNN/LSTM时序预测
机器学习研究会
21+阅读 · 2017年9月8日
Top