项目名称: 熔盐-卤化法可控制备微孔纳米炭纤维及微孔储能机制研究

项目编号: No.51502201

项目类型: 青年科学基金项目

立项/批准年度: 2016

项目学科: 一般工业技术

项目作者: 马昌

作者单位: 天津工业大学

项目金额: 21万元

中文摘要: 孔是决定炭基电容器电化学性能的重要因素。制备具有最优孔径和纳米孔深的微孔炭对获得高性能炭电极和多孔炭储能机理的深化均有着重要的意义。本课题提出从纳米炭纤维出发,采用熔盐-卤化的方法,将特定非碳原子引入到纳米炭纤维再进行卤化刻蚀,实现对纳米炭纤维的原子级造孔,引入新微孔,获得高比表面积的微孔纳米炭纤维。通过选择不同的非碳元素(硅、钛、锆、钒)实现微孔孔径的调控与优化。通过改变熔盐-卤化过程参数实现微孔含量的调控和孔道贯通性的优化。掌握熔盐-卤化制备中的关键过程,研究影响微孔结构的过程参数,探讨熔盐-卤化过程中微孔的形成与演变。将微孔纳米炭纤维用作电容器电极材料,考察其电化学性能。探讨微孔炭比表面积、孔结构与电化学性能(表面电容、质量电容、倍率性能)的关联以及离子在微孔孔道中的吸附迁移行为。本研究的目的在于探索开发高性能电容器炭基材料的新思路和新方法,突破目前多孔炭电容器的性能瓶颈。

中文关键词: 超级电容器;电极材料;电化学性能;能量密度;功率密度

英文摘要: Pore is one of the most important factors deciding the electrochemical performance of carbon-based supercapacitors. The preparation of microporous carbon with optimum pore size and nanometer pore length is very important for high-performanced supercapacitors and deepenning of storage mechanism of porous carbons. Herein,we propose to introduce the highly-controllable micropores into carbon nanofibers by molten salt-halogenation method,in which non-carbon atoms are introduced into carbon nanofibers and then extracted in the flow of chlorine at high temperature to creat pores at the atomic level.Carbon nanofibers with high surface area and nanometer pore length are obtained. Pore size can be regulated and optimized by selecting various kinds of non-carbon elements, e. g. Titanium, Silicon, Zirconium, Vanadium.By adjusting process conditions of molten salt-halogenation,the micropore quantity can be tuned and connectivity of pores can be improved. The research tries to find out the key process and influential factors of porous structure during molten salt and halogenation process. The formation and development of pores is studied. The electrochemical performance of microporous carbon nanofibers is measured as electrode material of supercapacitors.The relationship between specific surface area, porous structure and electrochemical performance (area-normalized capacitance, gravimetric capacitance and rate performance) as well as electroadsorption and transportation behavior of electrolyte ions in micropores are investigated. The purpose of the research is to explore a new strategy and method to high-performanced carbon-based supercapacitors, and to break the development bottleneck of porous carbon for supercapacitors.

英文关键词: supercapacitor;electrode material;electrochemical performance;energy density;power density

成为VIP会员查看完整内容
0

相关内容

工业人工智能驱动的流程工业智能制造
专知会员服务
105+阅读 · 2022年3月9日
深度对抗视觉生成综述
专知会员服务
34+阅读 · 2021年12月29日
专知会员服务
29+阅读 · 2021年8月27日
专知会员服务
40+阅读 · 2021年5月12日
专知会员服务
34+阅读 · 2021年5月7日
专知会员服务
114+阅读 · 2021年4月7日
专知会员服务
183+阅读 · 2020年11月23日
流程工业数字孪生关键技术探讨
专知
2+阅读 · 2021年4月7日
【APC】先进过程控制系统(APC: Advanced Process Control)
产业智能官
67+阅读 · 2020年7月12日
高分子材料领域的十大院士!
材料科学与工程
20+阅读 · 2018年9月18日
【材料课堂】EBSD晶体学织构基础及数据处理
材料科学与工程
34+阅读 · 2018年7月14日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
12+阅读 · 2018年1月12日
小贴士
相关主题
相关VIP内容
工业人工智能驱动的流程工业智能制造
专知会员服务
105+阅读 · 2022年3月9日
深度对抗视觉生成综述
专知会员服务
34+阅读 · 2021年12月29日
专知会员服务
29+阅读 · 2021年8月27日
专知会员服务
40+阅读 · 2021年5月12日
专知会员服务
34+阅读 · 2021年5月7日
专知会员服务
114+阅读 · 2021年4月7日
专知会员服务
183+阅读 · 2020年11月23日
相关资讯
流程工业数字孪生关键技术探讨
专知
2+阅读 · 2021年4月7日
【APC】先进过程控制系统(APC: Advanced Process Control)
产业智能官
67+阅读 · 2020年7月12日
高分子材料领域的十大院士!
材料科学与工程
20+阅读 · 2018年9月18日
【材料课堂】EBSD晶体学织构基础及数据处理
材料科学与工程
34+阅读 · 2018年7月14日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员