项目名称: BNT基低电场高电致应变三元无铅压电陶瓷的结构调控及其机理研究

项目编号: No.51502067

项目类型: 青年科学基金项目

立项/批准年度: 2016

项目学科: 一般工业技术

项目作者: 白王峰

作者单位: 杭州电子科技大学

项目金额: 20万元

中文摘要: BNT基陶瓷,在实现高应变响应时所需要的外加电场值较高以及高电致应变的温度稳定性较差,限制其在压电驱动器中的应用。本项目针对这一问题,通过在BNT-BT/BKT中引入具有不同相结构、晶胞畸变程度及容忍因子的Bi(MeMe)O3组元, 阐明BNT基材料中容忍因子与电致应变特性的作用机理,挖掘出有效改善BNT-BT/BKT陶瓷电致应变特性的第三组元Bi(MeMe)O3;拟采用微观结构调控(织构化)手段制备优化的BNT-BT/BKT-Bi(MeMe)O3压电陶瓷,深入研究烧结过程、模板含量、种类及尺寸对其的微观结构、相结构和应变特性的影响,揭示陶瓷材料组分-微观结构-相结构-电致应变特性的关联程度,建立结构(相结构与微观结构)与应变行为的关系模型。本项目通过调控相结构和微观结构,为获得低电场高电致应变并伴随优异温度稳定性的BNT基陶瓷提供理论依据,为无铅压电驱动器实用化发展奠定基础。

中文关键词: BNT基无铅材料;织构化;应变响应;相结构;容忍因子

英文摘要: With respect to the strain response in BNT-based ceramics, two most urgent tasks are to effectively reduce the electric field required for activating this large strain behavior, and to enhance the temperature stability of the large strain with the minimum degradation of the maximum achievable strains, which limit the use in practical actuator applications. Based on the above mentioned, the relationship between the tolerance factor and strain behavior in BNT-based lead-free piezoelectric ceramics will be clarified, and the type of the additive Bi(MeMe)O3 which can effectively reduce the electric field required for activating the large strain response in BNT-BT/BKT binary system will be excavated in terms of phase structure, the degree of crystal lattice distortion and tolerance factor of the Bi(MeMe)O3. In this project, templated grain growth technology will be used to control the microstructure, and to fabricate BNT-BT/BKT-Bi(MeMe)O3 lead-free piezoelectric ceramics with the promising strain response. Influence of the sintering process and the content, type and size of the template on microstructure, phase structure and strain behavior of BNT-based ceramics will be investigated thoroughly. The composition-microstructure-phase structure-strain behavior relation in textured BNT-based lead-free piezoelectric ceramics will be revealed, and the relationship between structure (phase structure and microstructure) in BNT-based lead-free piezoelectric ceramics will be established. On the basis of phase structure and microstructure control , the present project provides the foundation for the preparation of BNT-based lead-free piezoelectric ceramics with optimized strain properties featured by not only large strain response at a low driving field but also promising the temperature stability, and extends practical actuator applications for lead-free piezoelectric materials.

英文关键词: BNT-based lead-free materials;Texture;Strain response;Phase structure;Tolerance factor

成为VIP会员查看完整内容
0

相关内容

信息物理融合系统 (CPS)研究综述
专知会员服务
43+阅读 · 2022年3月14日
专知会员服务
54+阅读 · 2021年10月4日
专知会员服务
15+阅读 · 2021年6月6日
专知会员服务
45+阅读 · 2021年5月24日
专知会员服务
39+阅读 · 2021年5月12日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
28+阅读 · 2021年4月10日
专知会员服务
104+阅读 · 2021年4月7日
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
iPhone 放开第三方换屏限制确认了!
ZEALER订阅号
0+阅读 · 2021年12月23日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
流程工业数字孪生关键技术探讨
专知
1+阅读 · 2021年4月7日
这期Nature封面「雪崩」了!
新智元
0+阅读 · 2021年1月16日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
38+阅读 · 2019年4月12日
【材料课堂】EBSD晶体学织构基础及数据处理
材料科学与工程
32+阅读 · 2018年7月14日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月19日
RIS-Assisted Cooperative NOMA with SWIPT
Arxiv
0+阅读 · 2022年4月18日
小贴士
相关主题
相关VIP内容
信息物理融合系统 (CPS)研究综述
专知会员服务
43+阅读 · 2022年3月14日
专知会员服务
54+阅读 · 2021年10月4日
专知会员服务
15+阅读 · 2021年6月6日
专知会员服务
45+阅读 · 2021年5月24日
专知会员服务
39+阅读 · 2021年5月12日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
28+阅读 · 2021年4月10日
专知会员服务
104+阅读 · 2021年4月7日
相关资讯
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
iPhone 放开第三方换屏限制确认了!
ZEALER订阅号
0+阅读 · 2021年12月23日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
流程工业数字孪生关键技术探讨
专知
1+阅读 · 2021年4月7日
这期Nature封面「雪崩」了!
新智元
0+阅读 · 2021年1月16日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
38+阅读 · 2019年4月12日
【材料课堂】EBSD晶体学织构基础及数据处理
材料科学与工程
32+阅读 · 2018年7月14日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
微信扫码咨询专知VIP会员