项目名称: P(VDF-TrFE)/BaTiO3纳米纤维复合材料的制备及其成骨性能调控研究

项目编号: No.51502006

项目类型: 青年科学基金项目

立项/批准年度: 2016

项目学科: 一般工业技术

项目作者: 张学慧

作者单位: 北京大学

项目金额: 20万元

中文摘要: 针对材料在进行植入修复骨缺损过程中其材料微环境对宿主细胞功能与分化的调控这一重要科学问题,本项目基于骨组织的天然压电效应,仿生设计并构建具有不同组分比例、结构特性的P(VDF-TrFE)/BaTiO3纳米纤维复合材料体系,通过调节BaTiO3纳米纤维填料的直径和长径比,建立该材料体系组成、结构及力学性能与其电学特性的规律性关系。从细胞水平、基因水平和蛋白水平系统研究该复合材料特性对骨髓间充质干细胞(BMSCs)生物学行为的调控,以成骨分化过程中Wnt/β-catenin、MAPK和TGF-β/BMPs等相关信号通路为重点,探讨压电纳米纤维复合材料特性与BMSCs成骨功能分化之间的相互关联性,为新型生物反应性骨修复材料的进一步优化设计、开发与合理应用提供理论基础。

中文关键词: 压电陶瓷;纳米纤维;电学特性;成骨分化;调控作用

英文摘要: In view of the important scientific issue that the implanted materials’ microenvironment could regulate the function and differentiation of the host cells during the process of implantation for repairing the bone defects,, The purpose of this project is to design and prepare P(VDF-TrFE)/BaTiO3 piezoelectric composite materials with different component proportion, structure properties based on the piezoelectric effect of natural bone tissue. Establish the relationship among the composition, structure and electrical characteristics of the composite materials by regulating the diameter and aspect ratio of the BaTiO3 nanofibers. The biological behaviour of BMSCs response to the composite materials’ piezoelectric properties will be investigated systematically. This study focuses on the osteogenic differentiation related signal pathway like Wnt/β-catenin, MAPK, TGF-β/BMPs and so forth. Clarify the correlation between the materials characteristics and osteogenic differentiation of BMSCs. This project will provide the experimental foundation for the further optimized design, develop and application of the neotype and biologically responsible bone replacement materials.

英文关键词: Piezoelectric ceramic;Nanofibers;Electrical property;Osteogenic differentiation;Regulation

成为VIP会员查看完整内容
0

相关内容

基于深度神经网络的图像缺损修复方法综述
专知会员服务
25+阅读 · 2021年12月18日
混合增强视觉认知架构及其关键技术进展
专知会员服务
37+阅读 · 2021年11月20日
轻量化神经网络卷积设计研究进展
专知会员服务
54+阅读 · 2021年10月24日
专知会员服务
54+阅读 · 2021年10月4日
专知会员服务
40+阅读 · 2021年9月7日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
26+阅读 · 2021年2月26日
从HPO到NAS: 自动深度学习
专知会员服务
37+阅读 · 2020年6月15日
复数神经网络及其 PyTorch 实现
极市平台
5+阅读 · 2022年1月17日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
Science:脂肪细胞外泌体对巨噬细胞发挥调节功能
外泌体之家
18+阅读 · 2019年3月7日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
11+阅读 · 2018年5月13日
小贴士
相关主题
相关VIP内容
基于深度神经网络的图像缺损修复方法综述
专知会员服务
25+阅读 · 2021年12月18日
混合增强视觉认知架构及其关键技术进展
专知会员服务
37+阅读 · 2021年11月20日
轻量化神经网络卷积设计研究进展
专知会员服务
54+阅读 · 2021年10月24日
专知会员服务
54+阅读 · 2021年10月4日
专知会员服务
40+阅读 · 2021年9月7日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
26+阅读 · 2021年2月26日
从HPO到NAS: 自动深度学习
专知会员服务
37+阅读 · 2020年6月15日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
微信扫码咨询专知VIP会员