项目名称: 基于铒掺杂纳米晶的高增益聚合物光波导放大器

项目编号: No.61475061

项目类型: 面上项目

立项/批准年度: 2015

项目学科: 无线电电子学、电信技术

项目作者: 王菲

作者单位: 吉林大学

项目金额: 84万元

中文摘要: 基于有机聚合物材料的掺铒光波导放大器(EDWA)具有适于硅基集成、工艺简单、制作成本低等特点,在平面光子集成和短距离光通信系统中有着重要的应用。但目前相关器件的增益较小,稳定性和可靠性都较差,其距离实际应用有很大差距。本项目提出将稀土掺杂纳米发光技术与聚合物光波导技术相结合用于实现高增益聚合物EDWA,主要研究器件性能提升中的基础问题和关键技术。拟通过研究稀土掺杂纳米晶的发光光谱及动力学性质,阐明铒离子1.53微米发光增强的物理实质;设计和合成发光效率高、在聚合物中分散性好和掺入量高的掺铒氟化物纳米晶;设计与制备低损耗的聚合物光波导;系统研究掺杂离子种类、掺杂浓度、纳米晶的尺寸与晶相、纳米晶在聚合物中的掺入量、光波导结构参数、光波导损耗等对器件性能的影响,解决影响器件增益、稳定性和可靠性的关键科学问题,确定获得高增益器件的基本技术途径,研制出净增益超过15 dB的硅基聚合物光波导放大器。

中文关键词: 光波导放大器;聚合物;铒掺杂纳米粒子;硅狭缝波导;平面光子集成

英文摘要: Erbium doped waveguide amplifiers (EDWA) based on polymers have found nemrous applications in many fields as photonic integrated circuits and short-distance optical communication systems for their easy-to-integrate with silicon devices, easy processing and potential low cost. The next issue to be solved is how to realize high gain polymer EDWAs. However, at present, the net gain of polymer EDWA is still quite low, and its stability and reliability are not good, which make the present devices unsuitable for real applications. In this proposal, the applicant proposes to investigate high gain polymer EDWA by combining rare earth ions doped luminescent nanocrystals with polymer optical waveguide technology, and address issues of the effects of the type of doped ions, the doping concentration, the size and structure of nanocrystals, the doping concentration of nanocrystals in polymers, the parameters of optical waveguides and the loss on the performance of polymer EDWA, design and fabrication of erbium doped fluoride nanocrystals with high luminescence efficiency, good dispersity, high solubility in polymers, design and fabrication of polymer optical waveguides with low loss. One target of this application is to investigate optical properties and luminescence dynamics of rare earth ions doped nanocrystals and clarify the physical principles for strong 1.53 microns fluorescence. The other is to obtain polymer EDWAs with a net gain of more than 15 dB. Successful demonstration of the targets in this application will place our group at the forefront of international research in the fields of EDWAs, with an opportunity to the development of novel organic opto-electronic devices.

英文关键词: optical waveguide amplifiers;polymer;Er doped nanoparticles;Si slot waveguide;photonic integrated circuit

成为VIP会员查看完整内容
0

相关内容

【CVPR2022】多视图聚合的大规模三维语义分割
专知会员服务
20+阅读 · 2022年4月20日
AAAI 2022 | SASA: 重新思考三维物体检测中的点云采样问题
专知会员服务
23+阅读 · 2022年3月1日
WSDM 2022 | 基于图神经网络的协同过滤设计空间研究
专知会员服务
36+阅读 · 2022年1月3日
【NeurIPS 2021】 基于置信度校正的可信图神经网络
专知会员服务
20+阅读 · 2021年12月26日
专知会员服务
11+阅读 · 2021年7月13日
【WSDM2021】保存节点相似性的图卷积网络
专知会员服务
40+阅读 · 2020年11月22日
专知会员服务
28+阅读 · 2020年8月8日
高分子材料领域的十大院士!
材料科学与工程
18+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年4月20日
Max-Margin Contrastive Learning
Arxiv
17+阅读 · 2021年12月21日
Arxiv
12+阅读 · 2019年4月9日
小贴士
相关VIP内容
【CVPR2022】多视图聚合的大规模三维语义分割
专知会员服务
20+阅读 · 2022年4月20日
AAAI 2022 | SASA: 重新思考三维物体检测中的点云采样问题
专知会员服务
23+阅读 · 2022年3月1日
WSDM 2022 | 基于图神经网络的协同过滤设计空间研究
专知会员服务
36+阅读 · 2022年1月3日
【NeurIPS 2021】 基于置信度校正的可信图神经网络
专知会员服务
20+阅读 · 2021年12月26日
专知会员服务
11+阅读 · 2021年7月13日
【WSDM2021】保存节点相似性的图卷积网络
专知会员服务
40+阅读 · 2020年11月22日
专知会员服务
28+阅读 · 2020年8月8日
相关基金
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
微信扫码咨询专知VIP会员