项目名称: 聚合物反向电池的相分离机制和光伏性能研究

项目编号: No.61274054

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 无线电电子学、电信技术

项目作者: 韦玮

作者单位: 南京邮电大学

项目金额: 85万元

中文摘要: 聚合物本体异质结光伏电池目前已经取得了巨大的进展,光电转换效率超过10%,即将进入产业化阶段,但是其稳定性和效率仍需提升。反向光伏电池采用涂有修饰层的ITO作为阴极、高功函数的金属作为阳极,解决了传统正向电池的稳定性和耐水、氧等问题;此外,在反向光伏电池的光活化层中存在着给体和受体材料的垂直相分离,能够有效地改善传统电池内部电子和空穴的传输和收集特性,有望获得高稳定性和高光电转换效率的聚合物光伏器件。然而迄今,关于反向电池中的给/受体垂直相分离研究的尚不充分,且有一定的分歧。 本项目拟研究聚合物反向电池中的垂直相分离机制和光伏特性;探索各种阴极修饰层的制备、形貌和功函数;选择合适的聚合物给体和富勒烯受体,通过各种退火方式制备反向电池器件;系统研究光活化层在电极上的相分离机制、微结构以及电子传输和收集规律,获得一种高效、稳定的聚合物光伏电池,为有机聚合物反型器件的发展提供理论依据和实验参数。

中文关键词: 聚合物太阳能电池;反向光伏电池;垂直相分离;界面层;光电转换效率

英文摘要: Organic polymer solar cells (PSCs) based on the bulk heterojunction structure have made great progress and the power conversion efficiency (PCE) of this PSCs device have reached over 10% in the recent days. However, the conventional structure has drawbacks in the stability and lifetime of device, so the efficiency and stability still need to be improved to fulfill the commercial requirements. Inverted organic solar cells, which take coated ITO as cathode and a high work function (HWF) metal as anode, can improve the drawbacks in the stability and oxidizability when exposed in oxygen and moisture. In addition, it has been reported that the charge collections are also enhanced in the inverted geometry, owing to inherent vertical phase separation with a donor-enriched top surface and an acceptor enriched bottom surface in the active polymer of inverted solar cells device. Hence, inverted geometry contains the advantages of device stability, design flexibility and higher PCE. So far there still are some controversies because of the insufficient research of vertical phase separation related donor/acceptor phase. This project develops a model system of inverted structural PSCs device to research the mechanism and photovoltaic properties of the inverted phase separation, and to investigate impact factor of different m

英文关键词: Polymer solar cells;Inverted polymer solar cells;Vertical phase separation;Interfacial layer;Photovoltaic conversion efficiency

成为VIP会员查看完整内容
0

相关内容

【CVPR2022】EDTER:基于Transformer的边缘检测(CVPR2022)
专知会员服务
31+阅读 · 2022年3月18日
专知会员服务
41+阅读 · 2021年9月7日
专知会员服务
35+阅读 · 2021年5月28日
专知会员服务
40+阅读 · 2021年5月24日
专知会员服务
31+阅读 · 2021年5月7日
百页Python编程指南
专知会员服务
67+阅读 · 2021年2月16日
专知会员服务
51+阅读 · 2020年12月28日
【NeurIPS2020】可靠图神经网络鲁棒聚合
专知会员服务
19+阅读 · 2020年11月6日
【KDD2020】自适应多通道图卷积神经网络
专知会员服务
119+阅读 · 2020年7月9日
全固态电池领域,小公司的加速度——恩力动力
创业邦杂志
0+阅读 · 2022年2月25日
iPhone 13 系列电池续航优势领先 | Surface Pro 8 开启预售
ZEALER订阅号
0+阅读 · 2021年10月12日
高分子材料领域的十大院士!
材料科学与工程
18+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Talking-Heads Attention
Arxiv
15+阅读 · 2020年3月5日
小贴士
相关VIP内容
【CVPR2022】EDTER:基于Transformer的边缘检测(CVPR2022)
专知会员服务
31+阅读 · 2022年3月18日
专知会员服务
41+阅读 · 2021年9月7日
专知会员服务
35+阅读 · 2021年5月28日
专知会员服务
40+阅读 · 2021年5月24日
专知会员服务
31+阅读 · 2021年5月7日
百页Python编程指南
专知会员服务
67+阅读 · 2021年2月16日
专知会员服务
51+阅读 · 2020年12月28日
【NeurIPS2020】可靠图神经网络鲁棒聚合
专知会员服务
19+阅读 · 2020年11月6日
【KDD2020】自适应多通道图卷积神经网络
专知会员服务
119+阅读 · 2020年7月9日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员