项目名称: 自感知/自激励压电泵的研究

项目编号: No.51205366

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 机械工程学科

项目作者: 张忠华

作者单位: 浙江师范大学

项目金额: 25万元

中文摘要: 提出将压电材料正/逆压电效应相结合同步实现流体的驱动、流体输出压力/流量自动检测(自感知)以及压电振子驱动电压频率自动生成(自激励)的新方法,进而构造一种体积小、精度高、可控性好、自适应性强且输出流量/压力自感知和工作频率自动生成的自感知/自激励压电泵,用于药品输送、燃料电池、微量化学分析等领域。主要内容:统筹考虑流体驱动、自感知检测与振动频率自激励同步过程的耦合效应,通过模拟与仿真分析,从理论上获得机电液系统要素对自感知/自激励压电泵性能的影响规律以及合理的系统参数匹配关系;揭示压电耦合与流固耦合下压电泵流量/压力自感知和压电振子振动频率自激励的工作机理,提取制约自感知/自激励能力的关键要素;以压电叠堆/晶片为换能器进行自感知/自激励压电泵多种样机的制作与试验,获得最优机械结构、集成方案、振动频率自激励控制策略;完成自感知/自激励压电泵设计与制作(至少3套),提供设计方法、关键技术参数。

中文关键词: 压电;微泵;自感知;流量;压力

英文摘要: Through combining piezoelectric materials' direct with converse piezoelectric effect, a new method is proposed that driving of fluid, automatic detection of fluid's output flow/pressure (self-sensing) and automatic generation of driving voltage frequency of piezoelectric vibrator (self-exciting) can be realized synchronously in this item. Accordingly, a kind of new piezoelectric pump with small volume, high precision, good controllability, great adaptability and self-sensing output flow/pressure and automatic generation of working frequency is proposed, called self-sensing/self-exciting piezoelectric micro-pumps. They may be applied on drugs' delivery, fuel cells, microchemical analysis and so on. The main research contents of this item are as follows. Taking into overall consideration the coupling effects between fluid driving, self-sensing detection and self-exciting of vibration frequency, the influence laws of mechanical-electrical-liquid system elements on the output performances of the self-sensing/self-exciting piezoelectric pumps and the reasonable matching relationship of the systems parameters are obtained from the theory through simulation analysis. The working mechanisms of output flow/pressure self-sensing and vibration frequency self-exciting of piezoelectric vibrators are revealed under the piezoe

英文关键词: piezoelectric;micropumps;self-sensing;flow rate;pressure

成为VIP会员查看完整内容
0

相关内容

CVPR 2022 | 点云分割的对比边界学习
专知会员服务
14+阅读 · 2022年4月30日
人工智能技术在智能武器装备的研究与应用
专知会员服务
162+阅读 · 2022年4月13日
军事知识图谱构建技术
专知会员服务
115+阅读 · 2022年4月8日
ICLR 2022|化学反应感知的分子表示学习
专知会员服务
19+阅读 · 2022年2月10日
专知会员服务
29+阅读 · 2021年7月25日
基于改进卷积神经网络的短文本分类模型
专知会员服务
25+阅读 · 2020年7月22日
CVPR 2022 | 点云分割的对比边界学习
专知
1+阅读 · 2022年4月30日
深度学习技术在自动驾驶中的应用
智能交通技术
25+阅读 · 2019年10月27日
自动驾驶车载激光雷达技术现状分析
智能交通技术
16+阅读 · 2019年4月9日
深度学习在自动驾驶感知领域的应用
AI100
11+阅读 · 2019年3月6日
【工业智能】风机齿轮箱故障诊断 — 基于振动信号
【无人机】无人机的自主与智能控制
产业智能官
42+阅读 · 2017年11月27日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
13+阅读 · 2022年1月20日
Arxiv
19+阅读 · 2021年6月15日
Arxiv
30+阅读 · 2019年3月13日
小贴士
相关主题
相关VIP内容
CVPR 2022 | 点云分割的对比边界学习
专知会员服务
14+阅读 · 2022年4月30日
人工智能技术在智能武器装备的研究与应用
专知会员服务
162+阅读 · 2022年4月13日
军事知识图谱构建技术
专知会员服务
115+阅读 · 2022年4月8日
ICLR 2022|化学反应感知的分子表示学习
专知会员服务
19+阅读 · 2022年2月10日
专知会员服务
29+阅读 · 2021年7月25日
基于改进卷积神经网络的短文本分类模型
专知会员服务
25+阅读 · 2020年7月22日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员