项目名称: 基于原子非线性的全光量子器件及其特性的研究

项目编号: No.61308121

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 无线电电子学、电信技术

项目作者: 周海涛

作者单位: 山西大学

项目金额: 29万元

中文摘要: 全光量子器件是一种量子相干器件,它可用于控制光子在受限系统和光子网络中的相干传输,实现对各种量子态的全光操控,它已成为目前快速发展的重要领域之一,推动了量子信息技术向集成化和网络化的实用型方向发展。本项目拟在已有的原子相干和四波混频效应的实验研究基础上,在双色场耦合的铯原子系统中,利用原子相干对光折射率的调制,开展基于原子气体的全光器件及其特性的研究。具体内容包括:1)、在EIT介质中,实现光学二极管、三极管及反射镜等光学器件效应的实验研究;2)、实验研究和理论分析光学器件工作特性随介质非线性效应变化规律;3)、光学器件应用到四波混频过程,对多通道信号场的全光控制及量子信息转换的实验研究;4)、全光控制信号场的量子噪声特性的实验研究及理论分析。探索多通道量子信息存储、量子逻辑门等量子网络技术的可行性方案。

中文关键词: 量子关联;光学反射镜;光学二极管;四波混频;量子器件

英文摘要: As a kind of quantum coherent devices, all-optical quantum device produced by the nonlinear interaction of atoms and light in light- matter coupled system, can be used to control the coherent transmission of the photons in the constrained system and photonic network, not only has the traditional optics feature such as optical isolator, light mirror, etc., but also exhibit the physical characteristics like diode, transistor, and other electronic component. The biggest difference with traditional devices is that all-optical devices can be easily coupled to the quantum information processing systems, to achieve all-optical manipulation of quantum states, which promote the development of quantum information technology to the practical direction of integration and networking. On th basis of our experimental research about atomic coherence and four wave mixing effects ,this project is mainly researching the all-optical devices and their characteristics based on atomic gas, and the primarily method is through optical refractive index modulation induced by atomic coherence in the cesium atomic system coupled by the bicromatic fields. Our research contents are as follows:1) In the EIT medium, the experimental research of optical device effects such as optical diode, optical transistor and mirror, and so on; 2), The exper

英文关键词: quantum correlation;optical mirror;optical diode;four-wave mixing;quantum device

成为VIP会员查看完整内容
0

相关内容

中国信通院:量子信息技术发展与应用研究报告
专知会员服务
41+阅读 · 2022年1月1日
专知会员服务
43+阅读 · 2021年5月24日
2021年全球量子信息发展报告, 32页pdf
专知会员服务
78+阅读 · 2021年5月14日
量子信息技术研究现状与未来
专知会员服务
38+阅读 · 2020年10月11日
专知会员服务
18+阅读 · 2020年9月14日
微软发布量子计算最新成果,证实拓扑量子比特的物理机理
微软研究院AI头条
0+阅读 · 2022年3月18日
小芯片大安全:数字隔离器的前世今生
中国科学院自动化研究所
0+阅读 · 2021年3月16日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
25+阅读 · 2018年8月19日
Arxiv
151+阅读 · 2017年8月1日
小贴士
相关VIP内容
中国信通院:量子信息技术发展与应用研究报告
专知会员服务
41+阅读 · 2022年1月1日
专知会员服务
43+阅读 · 2021年5月24日
2021年全球量子信息发展报告, 32页pdf
专知会员服务
78+阅读 · 2021年5月14日
量子信息技术研究现状与未来
专知会员服务
38+阅读 · 2020年10月11日
专知会员服务
18+阅读 · 2020年9月14日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员