Recently, large language models (LLMs) have been widely used as recommender systems, owing to their strong reasoning capability and their effectiveness in handling cold-start items. To better adapt LLMs for recommendation, retrieval-augmented generation (RAG) has been incorporated. Most existing RAG methods are user-based, retrieving purchase patterns of users similar to the target user and providing them to the LLM. In this work, we propose ItemRAG, an item-based RAG method for LLM-based recommendation that retrieves relevant items (rather than users) from item-item co-purchase histories. ItemRAG helps LLMs capture co-purchase patterns among items, which are beneficial for recommendations. Especially, our retrieval strategy incorporates semantically similar items to better handle cold-start items and uses co-purchase frequencies to improve the relevance of the retrieved items. Through extensive experiments, we demonstrate that ItemRAG consistently (1) improves the zero-shot LLM-based recommender by up to 43% in Hit-Ratio-1 and (2) outperforms user-based RAG baselines under both standard and cold-start item recommendation settings.
翻译:近年来,大语言模型因其强大的推理能力和处理冷启动物品的有效性,被广泛用作推荐系统。为了更好地使大语言模型适应推荐任务,检索增强生成技术已被引入。现有的大多数RAG方法是基于用户的,即检索与目标用户相似用户的购买模式,并将其提供给大语言模型。在本工作中,我们提出了ItemRAG,一种用于基于大语言模型推荐的、基于物品的RAG方法,该方法从物品-物品共购历史中检索相关物品(而非用户)。ItemRAG帮助大语言模型捕捉物品间的共购模式,这对推荐有益。特别地,我们的检索策略结合了语义相似的物品以更好地处理冷启动物品,并利用共购频率来提高检索物品的相关性。通过大量实验,我们证明ItemRAG能够持续地(1)将基于大语言模型的零样本推荐器的Hit-Ratio-1指标提升高达43%,并且(2)在标准推荐和冷启动物品推荐两种设置下,均优于基于用户的RAG基线方法。