A graph $G = (V, E)$ is word-representable if there exists a word $w$ over the alphabet $V$ such that, for any two distinct vertices $x, y \in V$, $xy \in E$ if and only if $x$ and $y$ alternate in $w$. Two letters $x$ and $y$ are said to alternate in $w$ if, after removing all other letters from $w$, the resulting word is of the form $xyxy\dots$ or $yxyx\dots$ (of even or odd length). For a given set $R = \{r_1, r_2, \dots, r_k\}$ of jump elements, an undirected circulant graph $C_n(R)$ on $n$ vertices has vertex set $\{0, 1, \dots, n-1\}$ and edge set $ E = \left\{ \{i,j\} \;\middle|\; |i - j| \bmod n \in \{r_1, r_2, \dots, r_k\} \right\}, $ where $0 < r_1 < r_2 < \dots < r_k < \frac{n}{2}$. Recently, Kitaev and Pyatkin proved that every 4-regular circulant graph is word-representable. Srinivasan and Hariharasubramanian further investigated circulant graphs and obtained bounds on the representation number for $k$-regular circulant graphs with $2 \le k \le 4$. In addition to these positive results, their work also presents examples of non-word-representable circulant graphs. In this work, we study word-representability and the representation number of 5-regular circulant graphs via techniques from elementary number theory and group theory, as well as graph coloring, graph factorization and morphisms.
翻译:若存在字母表$V$上的单词$w$,使得对于任意两个不同顶点$x, y \in V$,$xy \in E$当且仅当$x$与$y$在$w$中交替出现,则称图$G = (V, E)$是单词可表示的。若从$w$中删除所有其他字母后,所得单词呈$xyxy\\dots$或$yxyx\\dots$形式(长度可为奇数或偶数),则称字母$x$和$y$在$w$中交替出现。对于给定的跳跃元素集合$R = \\{r_1, r_2, \\dots, r_k\\}$,在$n$个顶点上的无向循环图$C_n(R)$具有顶点集$\\{0, 1, \\dots, n-1\\}$和边集$ E = \\left\\{ \\{i,j\\} \\;\\middle|\\; |i - j| \\bmod n \\in \\{r_1, r_2, \\dots, r_k\\} \\right\\}, $ 其中$0 < r_1 < r_2 < \\dots < r_k < \\frac{n}{2}$。近期,Kitaev与Pyatkin证明了所有4正则循环图均为单词可表示的。Srinivasan与Hariharasubramanian进一步研究了循环图,并对$2 \\le k \\le 4$的$k$正则循环图给出了表示数的界。除这些积极结果外,他们的研究还提供了非单词可表示循环图的实例。本文通过初等数论、群论以及图着色、图分解与态射等方法,系统研究了5正则循环图的单词可表示性及其表示数。