In the presence of auxiliary information, model-assisted estimators rely on a working model linking the variable of interest to the auxiliary variables in order to improve the efficiency of the Horvitz-Thompson estimator. Model-assisted estimators cannot be directly computed with nonresponse since the values of the variable of interest is missing for a part of the sample units. In this article, we present and study a class of quasi-model-assisted estimators that extend model-assisted estimators to settings with non-ignorable nonresponse. These estimators combine a working model and a response model. The former is used to improve the efficiency, the latter to reweight the nonrespondents. A wide range of statistical learning methods can be used to estimate either of these models. We show that several well-known existing estimators are particular cases of quasi-model-assisted estimators. We examine the behavior of these estimators through a simulation study. The results illustrate how these estimators remain competitive in terms of bias and variance when one of the two models is poorly specified.
翻译:在存在辅助信息的条件下,模型辅助估计量通过建立目标变量与辅助变量之间的工作模型,以提高霍维茨-汤普森估计量的效率。然而,当样本单元存在无应答时,由于部分样本单元的目标变量值缺失,模型辅助估计量无法直接计算。本文提出并研究了一类拟模型辅助估计量,将模型辅助估计量扩展至存在不可忽略无应答的场景。这些估计量结合了工作模型与应答模型:前者用于提升估计效率,后者用于对无应答单元进行重新加权。多种统计学习方法均可用于估计这两类模型。我们证明,若干现有经典估计量均为拟模型辅助估计量的特例。通过模拟研究,我们考察了这类估计量的性能。结果表明,当两个模型中有一个设定不当时,这些估计量在偏差与方差方面仍能保持较好的竞争力。