Assessing model adequacy is a crucial step in regression analysis, ensuring the validity of statistical inferences. For Generalized Functional Linear Models (GFLMs), which are widely used for modeling relationships between scalar responses and functional predictors, there is a recognized need for formal goodness-of-fit testing procedures. Current literature on this specific topic remains limited. This paper introduces a novel goodness-of-fit test for GFLMs. The test statistic is formulated as a U-statistic derived from a Cramér-von-Mises metric integrated over all one-dimensional projections of the functional predictor. This projection averaging strategy is designed to effectively mitigate the curse of dimensionality. We establish the asymptotic normality of the test statistic under the null hypothesis and prove the consistency under the alternatives. As the asymptotic variance of the limiting null distribution can be complex for practical use, we also propose practical bootstrap resampling methods for both continuous and discrete responses to compute p-values. Simulation studies confirm that the proposed test demonstrates good power performance across various settings, showing advantages over existing methods.


翻译:评估模型充分性是回归分析中确保统计推断有效性的关键步骤。对于广泛用于建模标量响应与函数型预测变量之间关系的广义函数线性模型(GFLMs),目前公认需要正式的拟合优度检验程序。现有文献中针对该特定主题的研究仍较为有限。本文提出了一种针对GFLMs的新型拟合优度检验方法。该检验统计量构造为基于Cramér-von-Mises度量的U统计量,该度量通过对函数型预测变量的所有一维投影进行积分得到。这种投影平均策略旨在有效缓解维度灾难问题。我们在原假设下建立了检验统计量的渐近正态性,并在备择假设下证明了其相合性。由于极限零分布的渐近方差在实际应用中可能较为复杂,我们还针对连续响应和离散响应分别提出了实用的自助重抽样方法以计算p值。模拟研究证实,所提出的检验方法在各种设定下均表现出良好的功效性能,相较于现有方法具有明显优势。

0
下载
关闭预览

相关内容

【NeurIPS2024】几何轨迹扩散模型
专知会员服务
24+阅读 · 2024年10月20日
专知会员服务
23+阅读 · 2021年6月22日
AAAI 2022 | ProtGNN:自解释图神经网络
专知
10+阅读 · 2022年2月28日
【CVPR 2020 Oral】小样本类增量学习
专知
20+阅读 · 2020年6月26日
【NeurIPS2019】图变换网络:Graph Transformer Network
误差反向传播——CNN
统计学习与视觉计算组
30+阅读 · 2018年7月12日
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关VIP内容
【NeurIPS2024】几何轨迹扩散模型
专知会员服务
24+阅读 · 2024年10月20日
专知会员服务
23+阅读 · 2021年6月22日
相关资讯
AAAI 2022 | ProtGNN:自解释图神经网络
专知
10+阅读 · 2022年2月28日
【CVPR 2020 Oral】小样本类增量学习
专知
20+阅读 · 2020年6月26日
【NeurIPS2019】图变换网络:Graph Transformer Network
误差反向传播——CNN
统计学习与视觉计算组
30+阅读 · 2018年7月12日
相关基金
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员