We present a bifidelity Karhunen-Loève expansion (KLE) surrogate model for field-valued quantities of interest (QoIs) under uncertain inputs. The approach combines the spectral efficiency of the KLE with polynomial chaos expansions (PCEs) to preserve an explicit mapping between input uncertainties and output fields. By coupling inexpensive low-fidelity (LF) simulations that capture dominant response trends with a limited number of high-fidelity (HF) simulations that correct for systematic bias, the proposed method enables accurate and computationally affordable surrogate construction. To further improve surrogate accuracy, we form an active learning strategy that adaptively selects new HF evaluations based on the surrogate's generalization error, estimated via cross-validation and modeled using Gaussian process regression. New HF samples are then acquired by maximizing an expected improvement criterion, targeting regions of high surrogate error. The resulting BF-KLE-AL framework is demonstrated on three examples of increasing complexity: a one-dimensional analytical benchmark, a two-dimensional convection-diffusion system, and a three-dimensional turbulent round jet simulation based on Reynolds-averaged Navier--Stokes (RANS) and enhanced delayed detached-eddy simulations (EDDES). Across these cases, the method achieves consistent improvements in predictive accuracy and sample efficiency relative to single-fidelity and random-sampling approaches.
翻译:本文提出了一种针对不确定输入下场值型关注量(QoIs)的双保真度Karhunen-Loève展开(KLE)代理模型。该方法结合了KLE的谱效率和多项式混沌展开(PCEs),以保持输入不确定性与输出场之间的显式映射关系。通过将捕捉主导响应趋势的低成本低保真度(LF)模拟与有限数量的纠正系统偏差的高保真度(HF)模拟相结合,所提方法能够实现精确且计算成本可负担的代理模型构建。为进一步提升代理模型精度,我们设计了一种主动学习策略,该策略基于代理模型的泛化误差(通过交叉验证估计并利用高斯过程回归建模)自适应地选择新的HF评估点。新的HF样本通过最大化期望改进准则获取,以针对代理模型误差较高的区域。所构建的BF-KLE-AL框架在三个复杂度递增的示例中得到验证:一维解析基准问题、二维对流-扩散系统,以及基于雷诺平均Navier-Stokes(RANS)和增强延迟分离涡模拟(EDDES)的三维湍流圆射流模拟。在所有案例中,相较于单保真度及随机采样方法,本方法在预测精度和样本效率方面均实现了持续改进。