This note develops the first-ever noise-centric anomaly prediction method for a fused discrete-time signal. A Wavelet Packet Transform (WPT) provides a time--frequency expansion in which structure and residual can be separated via orthogonal projection. Higher-Order Statistics (HOS), particularly the third-order cumulant (and its bispectral interpretation), quantify non-Gaussianity and nonlinear coupling in the extracted residual. Compact noise signatures are constructed and an analytically calibrated Mahalanobis detector yields a closed-form decision rule with non-central chi-square performance under mean-shift alternatives. Propositions and proofs establish orthonormality, energy preservation, Gaussian-null behavior of cumulants, and the resulting test statistics.


翻译:本文首次提出了一种面向融合离散时间信号的以噪声为中心的异常预测方法。通过小波包变换(WPT)实现时频展开,利用正交投影分离信号中的结构成分与残差。高阶统计量(HOS),特别是三阶累积量(及其双谱解释),用于量化提取残差中的非高斯性与非线性耦合特性。通过构建紧凑的噪声特征,并结合经解析校准的马氏距离检测器,得到一种闭式决策规则,该规则在均值偏移假设下服从非中心卡方分布性能。文中通过命题与证明,确立了正交性、能量守恒性、累积量的高斯零行为以及由此导出的检验统计量性质。

0
下载
关闭预览

相关内容

【ICML2023】SEGA:结构熵引导的图对比学习锚视图
专知会员服务
22+阅读 · 2023年5月10日
MonoGRNet:单目3D目标检测的通用框架(TPAMI2021)
专知会员服务
18+阅读 · 2021年5月3日
【CVPR2020】跨模态哈希的无监督知识蒸馏
专知会员服务
61+阅读 · 2020年6月25日
【AAAI2023】用于图对比学习的谱特征增强
专知
20+阅读 · 2022年12月11日
【NeurIPS2019】图变换网络:Graph Transformer Network
误差反向传播——CNN
统计学习与视觉计算组
30+阅读 · 2018年7月12日
Spark机器学习:矩阵及推荐算法
LibRec智能推荐
16+阅读 · 2017年8月3日
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
8+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关VIP内容
相关资讯
【AAAI2023】用于图对比学习的谱特征增强
专知
20+阅读 · 2022年12月11日
【NeurIPS2019】图变换网络:Graph Transformer Network
误差反向传播——CNN
统计学习与视觉计算组
30+阅读 · 2018年7月12日
Spark机器学习:矩阵及推荐算法
LibRec智能推荐
16+阅读 · 2017年8月3日
相关基金
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
8+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员