Sampling tasks have been successful in establishing quantum advantages both in theory and experiments. This has fueled the use of quantum computers for generative modeling to create samples following the probability distribution underlying a given dataset. In particular, the potential to build generative models on classically hard distributions would immediately preclude classical simulability, due to theoretical separations. In this work, we study quantum generative models from the perspective of output distributions, showing that models that anticoncentrate are not trainable on average, including those exhibiting quantum advantage. In contrast, models outputting data from sparse distributions can be trained. We consider special cases to enhance trainability, and observe that this opens the path for classical algorithms for surrogate sampling. This observed trade-off is linked to verification of quantum processes. We conclude that quantum advantage can still be found in generative models, although its source must be distinct from anticoncentration.


翻译:采样任务在理论和实验上均已成功确立了量子优势。这推动了利用量子计算机进行生成建模,以生成遵循给定数据集基础概率分布的样本。特别地,由于理论上的分离性,在经典困难分布上构建生成模型的潜力将直接排除经典可模拟性。在本工作中,我们从输出分布的角度研究量子生成模型,表明具有反集中特性的模型在平均意义上不可训练,包括那些展现出量子优势的模型。相反,输出稀疏分布数据的模型可以被训练。我们考虑特殊情况以增强可训练性,并观察到这为替代采样的经典算法开辟了道路。这种观察到的权衡与量子过程的验证相关联。我们得出结论,量子优势仍可在生成模型中找到,尽管其来源必须区别于反集中性。

0
下载
关闭预览

相关内容

在机器学习中,生成模型可以用来直接对数据建模(例如根据某个变量的概率密度函数进行数据采样),也可以用来建立变量间的条件概率分布。条件概率分布可以由生成模型根据贝叶斯定理形成。
【ICML2025】时序分布漂移下的自适应估计与学习
专知会员服务
12+阅读 · 2025年5月25日
【CVPR2024】医学基础模型的低秩知识分解
专知会员服务
35+阅读 · 2024年4月29日
【NeurIPS2020】可处理的反事实推理的深度结构因果模型
专知会员服务
49+阅读 · 2020年9月28日
【CVPR2021】跨模态检索的概率嵌入
专知
17+阅读 · 2021年3月2日
MNIST入门:贝叶斯方法
Python程序员
23+阅读 · 2017年7月3日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2025年12月30日
Arxiv
0+阅读 · 2025年12月27日
Arxiv
0+阅读 · 2025年12月26日
VIP会员
相关VIP内容
相关资讯
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员