Wireless sensor networks (WSNs) face critical challenges in energy management and network lifetime optimization due to limited battery resources and communication overhead. This study introduces a novel hybrid clustering protocol that integrates the Water Strider Algorithm (WSA) with Fuzzy C-Means (FCM) clustering to achieve superior energy efficiency and network longevity. The proposed WSA-FCM method employs WSA for global optimization of cluster-head positions and FCM for refined node membership assignment with fuzzy boundaries. Through extensive experimentation across networks of 200-800 nodes with 10 independent simulation runs, the method demonstrates significant improvements: First Node Death (FND) delayed by 16.1% ($678\pm12$ vs $584\pm18$ rounds), Last Node Death (LND) extended by 11.9% ($1,262\pm8$ vs $1,128\pm11$ rounds), and 37.4% higher residual energy retention ($5.47\pm0.09$ vs $3.98\pm0.11$ J) compared to state-of-the-art hybrid methods. Intra-cluster distances are reduced by 19.4% with statistical significance (p < 0.001). Theoretical analysis proves convergence guarantees and complexity bounds of $O(n\times c\times T)$, while empirical scalability analysis demonstrates near-linear scaling behaviour. The method outperforms recent hybrid approaches including MOALO-FCM, MSSO-MST, Fuzzy+HHO, and GWO-FCM across all performance metrics with rigorous statistical validation.
翻译:无线传感器网络(WSNs)由于电池资源有限和通信开销,在能量管理和网络寿命优化方面面临关键挑战。本研究提出了一种新颖的混合聚类协议,该协议将水黾算法(WSA)与模糊C均值(FCM)聚类相结合,以实现卓越的能量效率和网络寿命。所提出的WSA-FCM方法采用WSA进行簇头位置的全局优化,并利用FCM通过模糊边界进行精细的节点隶属度分配。通过在200至800个节点的网络上进行10次独立仿真实验,该方法展现出显著改进:与现有先进混合方法相比,首个节点死亡(FND)延迟了16.1%($678\pm12$轮对比$584\pm18$轮),末个节点死亡(LND)延长了11.9%($1,262\pm8$轮对比$1,128\pm11$轮),剩余能量保留率提高了37.4%($5.47\pm0.09$焦耳对比$3.98\pm0.11$焦耳)。簇内距离减少了19.4%,且具有统计显著性(p < 0.001)。理论分析证明了收敛保证和$O(n\times c\times T)$的复杂度界限,而实证可扩展性分析展示了近线性的扩展行为。该方法在所有性能指标上均优于包括MOALO-FCM、MSSO-MST、Fuzzy+HHO和GWO-FCM在内的近期混合方法,并经过了严格的统计验证。