The application of spectral-shifting films in greenhouses to shift green light to red light has shown variable growth responses across crop species. However, the yield enhancement of crops under altered light quality is related to the collective effects of the specific biophysical characteristics of each species. Considering only one attribute of a crop has limitations in understanding the relationship between sunlight quality adjustments and crop growth performance. Therefore, this study aims to comprehensively link multiple plant phenotypic traits and daily light integral considering the physiological responses of crops to their growth outcomes under SF using artificial intelligence. Between 2021 and 2024, various leafy, fruiting, and root crops were grown in greenhouses covered with either PEF or SF, and leaf reflectance, leaf mass per area, chlorophyll content, daily light integral, and light saturation point were measured from the plants cultivated in each condition. 210 data points were collected, but there was insufficient data to train deep learning models, so a variational autoencoder was used for data augmentation. Most crop yields showed an average increase of 22.5% under SF. These data were used to train several models, including logistic regression, decision tree, random forest, XGBoost, and feedforward neural network (FFNN), aiming to binary classify whether there was a significant effect on yield with SF application. The FFNN achieved a high classification accuracy of 91.4% on a test dataset that was not used for training. This study provide insight into the complex interactions between leaf phenotypic and photosynthetic traits, environmental conditions, and solar spectral components by improving the ability to predict solar spectral shift effects using SF.


翻译:在温室中应用光谱转换膜将绿光转换为红光,已显示出不同作物物种间的生长响应存在差异。然而,在改变光质条件下作物的产量提升与各物种特定生物物理特性的综合效应相关。仅考虑作物的单一属性在理解阳光质量调整与作物生长表现之间的关系方面存在局限性。因此,本研究旨在利用人工智能,综合考虑作物对光谱转换膜(SF)下生长结果的生理响应,全面关联多个植物表型性状及日累积光量。在2021年至2024年间,多种叶菜类、果菜类和根菜类作物在覆盖普通聚乙烯膜(PEF)或SF的温室中种植,并测量了各条件下栽培植物的叶片反射率、单位面积叶质量、叶绿素含量、日累积光量及光饱和点。共收集210个数据点,但数据量不足以训练深度学习模型,因此采用变分自编码器进行数据增强。大多数作物在SF下的产量平均提高了22.5%。这些数据用于训练多种模型,包括逻辑回归、决策树、随机森林、XGBoost和前馈神经网络(FFNN),旨在对SF应用是否对产量产生显著影响进行二分类。FFNN在未用于训练的测试数据集上实现了91.4%的高分类准确率。本研究通过提升利用SF预测太阳光谱转换效应的能力,深入揭示了叶片表型和光合性状、环境条件与太阳光谱组分之间复杂的相互作用。

0
下载
关闭预览

相关内容

【ICML2023】SEGA:结构熵引导的图对比学习锚视图
专知会员服务
22+阅读 · 2023年5月10日
NeurIPS 2021 | 微观特征混合进行宏观时间序列预测
专知会员服务
42+阅读 · 2021年11月12日
MonoGRNet:单目3D目标检测的通用框架(TPAMI2021)
专知会员服务
18+阅读 · 2021年5月3日
【WSDM2021】基于演化状态图的时间序列事件预测
专知会员服务
54+阅读 · 2020年12月1日
AAAI 2022 | ProtGNN:自解释图神经网络
专知
10+阅读 · 2022年2月28日
【CVPR 2020 Oral】小样本类增量学习
专知
20+阅读 · 2020年6月26日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关VIP内容
【ICML2023】SEGA:结构熵引导的图对比学习锚视图
专知会员服务
22+阅读 · 2023年5月10日
NeurIPS 2021 | 微观特征混合进行宏观时间序列预测
专知会员服务
42+阅读 · 2021年11月12日
MonoGRNet:单目3D目标检测的通用框架(TPAMI2021)
专知会员服务
18+阅读 · 2021年5月3日
【WSDM2021】基于演化状态图的时间序列事件预测
专知会员服务
54+阅读 · 2020年12月1日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员