Diffusion models offer appealing properties for language generation, such as parallel decoding and iterative refinement, but the discrete and highly structured nature of text challenges the direct application of diffusion principles. In this paper, we revisit diffusion language modeling from the view of diffusion process and language modeling, and outline five properties that separate diffusion mechanics from language-specific requirements. We first categorize existing approaches into continuous diffusion in embedding space and discrete diffusion over tokens. We then show that each satisfies only part of the five essential properties and therefore reflects a structural trade-off. Through analyses of recent large diffusion language models, we identify two central issues: (i) uniform corruption does not respect how information is distributed across positions, and (ii) token-wise marginal training cannot capture multi-token dependencies during parallel decoding. These observations motivate diffusion processes that align more closely with the structure of text, and encourage future work toward more coherent diffusion language models.
翻译:扩散模型为语言生成提供了并行解码和迭代优化等吸引人的特性,但文本的离散性与高度结构化特性对直接应用扩散原理构成了挑战。本文从扩散过程与语言建模的视角重新审视扩散语言建模,并归纳出区分扩散机制与语言特定需求的五项特性。我们首先将现有方法归类为嵌入空间的连续扩散与词元上的离散扩散。随后证明每种方法仅满足五项基本特性中的部分特性,因而体现了一种结构性权衡。通过对近期大型扩散语言模型的分析,我们识别出两个核心问题:(i) 均匀噪声注入未能考虑信息在不同位置上的分布特性;(ii) 基于词元边缘分布的训练无法在并行解码过程中捕捉多词元间的依赖关系。这些发现启示我们设计更贴合文本结构的扩散过程,并推动未来研究构建更具一致性的扩散语言模型。