题目: KG-BERT: BERT for Knowledge Graph Completion

摘要: 知识图谱是许多人工智能任务的重要资源,但往往是不完整的。在这项工作中,我们使用预训练的语言模型来对知识图谱进行补全。我们将知识图谱中的三元组视为文本序列,并提出了一种新的框架结构——知识图谱双向编码方向转换器(KG-BERT)来对这些三元组进行建模。该方法以一个三元组的实体描述和关系描述作为输入,利用KG-BERT语言模型计算三元组的评分函数。在多个基准知识图谱上的实验结果表明,我们的方法在三元组分类、链接预测和关系预测任务上都能达到最新的性能。

成为VIP会员查看完整内容
0
89

相关内容

知识图谱(Knowledge Graph),在图书情报界称为知识域可视化或知识领域映射地图,是显示知识发展进程与结构关系的一系列各种不同的图形,用可视化技术描述知识资源及其载体,挖掘、分析、构建、绘制和显示知识及它们之间的相互联系。 知识图谱是通过将应用数学、图形学、信息可视化技术、信息科学等学科的理论与方法与计量学引文分析、共现分析等方法结合,并利用可视化的图谱形象地展示学科的核心结构、发展历史、前沿领域以及整体知识架构达到多学科融合目的的现代理论。它能为学科研究提供切实的、有价值的参考。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等

题目: Probability Calibration for Knowledge Graph Embedding Models

摘要: 知识图谱嵌入的研究忽略了概率定标问题。我们展示了流行的嵌入模型确实是未经校准的。这意味着与预测三元组相关的概率估计是不可靠的。摘要针对知识图谱中常见的情况,提出了一种新的校准模型的方法。我们建议在我们的方法的同时使用普拉特尺度和等渗回归。在三个带有地面真值负样本的数据集上进行的实验表明,与使用负样本的黄金标准相比,我们的贡献使模型得到了很好的校准。我们得到的结果显着优于未校准的模型从所有校准方法。我们证明等渗回归提供了最好的整体性能,而不是没有权衡。我们还表明,经过校准的模型不需要定义特定于关系的决策阈值就可以达到最先进的精度。

成为VIP会员查看完整内容
0
24

有关实体及其关系的真实世界事实的知识库是各种自然语言处理任务的有用资源。然而,由于知识库通常是不完整的,因此能够执行知识库补全或链接预测是很有用的。本文全面概述了用于知识库完成的实体和关系的嵌入模型,总结了标准基准数据集上最新的实验结果。

成为VIP会员查看完整内容
0
60

题目: Learning Attention-based Embeddings for Relation Prediction in Knowledge Graphs

摘要: 近年来随着知识图谱(KGs)的大量涌现,加上实体间缺失关系(链接)的不完全或部分信息,催生了大量关于知识库补全(也称为关系预测)的研究。最近的一些研究表明,基于卷积神经网络(CNN)的模型能够生成更丰富、更有表现力的特征嵌入,因此在关系预测方面也有很好的表现。然而,我们观察到这些KG嵌入独立地处理三元组,因此不能捕获到三元组周围的复杂和隐藏的信息。为此,本文提出了一种新的基于注意的特征嵌入方法,该方法能同时捕获任意给定实体邻域内的实体特征和关系特征。此外,我们还在模型中封装了关系集群和多跳关系。我们的实验研究为我们基于注意力的模型的有效性提供了深入的见解,并且与所有数据集上的最先进的方法相比,有显著的性能提升。

成为VIP会员查看完整内容
0
77

简介: 今年AAAI 2020接收了1591篇论文,其中有140篇是与图相关的。接下来将会介绍几篇与图和知识图谱相关的几篇论文。以下为内容大纲:

  • KG-Augmented Language Models In Diherent Flavours

Hayashi等人在知识图上建立了自然语言生成(NLG)任务的潜在关系语言模型(LRLM)。就是说,模型在每个时间步上要么从词汇表中提取一个单词,要么求助于已知关系。 最终的任务是在给定主题实体的情况下生成连贯且正确的文本。 LRLM利用基础图上的KG嵌入来获取实体和关系表示,以及用于嵌入表面形式的Fasttext。 最后,要参数化流程,需要一个序列模型。作者尝试使用LSTM和Transformer-XL来评估与使用Wikidata批注的Freebase和WikiText链接的WikiFacts上的LRLM。

Liu等人提出了K-BERT,它希望每个句子(如果可能)都用来自某些KG的命名实体和相关(谓词,宾语)对进行注释。 然后,将丰富的句子树线性化为一个新的位置相似嵌入,并用可见性矩阵进行遮罩,该矩阵控制输入的哪些部分在训练过程中可以看到并得到关注。

Bouraoui等人进一步评估了BERT的关系知识,即在给定一对实体(例如,巴黎,法国)的情况下,它是否可以预测正确的关系。 作者指出,BERT在事实和常识性任务中通常是好的,而不是糟糕的非词性任务,并且在形态任务中相当出色。

  • Entity Matching in Heterogeneous KGs

不同的KG具有自己的模型来建模其实体,以前,基于本体的对齐工具仅依靠此类映射来标识相似实体。 今天,我们有GNN只需少量培训即可自动学习此类映射!

Sun等人提出了AliNet,这是一种基于端到端GNN的体系结构,能够对多跳邻域进行聚合以实现实体对齐。 由于架构异质性,由于相似的实体KG的邻域不是同构的,因此任务变得更加复杂。 为了弥补这一点,作者建议关注节点的n跳环境以及具有特定损失函数的TransE样式关系模式。

Xu等人研究了多语言KG(在这种情况下为DBpedia)中的对齐问题,其中基于GNN的方法可能陷入“多对一”的情况,并为给定的目标实体生成多个候选源实体。 作者研究了如何使他们的预测中的GNN编码输出更加确定。

  • Knowledge Graph Completion and Link Prediction

AAAI’20标记并概述了两个增长趋势:神经符号计算与临时性的KG越来越受到关注。

  • KG-based Conversational AI andQuestion Answering

AAAI’20主持了“对话状态跟踪研讨会”(DSTC8)。 该活动聚集了对话AI方面的专家,包括来自Google Assistant,Amazon Alexa和DeepPavlov的人员。在研讨会上,多个专家都提出了对话AI的相关研究方法。

成为VIP会员查看完整内容
Knowledge Graphs @ AAAI 2020 - Michael Galkin - Medium.pdf
0
87

【导读】2020 年 2 月 7 日-2 月 12 日,AAAI 2020 在美国纽约举办。Michael Galkin撰写了AAAI2020知识图谱论文相关研究趋势包括:KG-Augmented语言模型,异构KGs中的实体匹配,KG完成和链路预测,基于kg的会话人工智能和问题回答,包括论文,值得查看!

Hiroaki Hayashi, Zecong Hu, Chenyan Xiong, Graham Neubig: Latent Relation Language Models. AAAI 2020

  • 潜在关系语言模型:本文提出了一种潜在关系语言模型(LRLMs),这是一类通过知识图谱关系对文档中词语的联合分布及其所包含的实体进行参数化的语言模型。该模型具有许多吸引人的特性:它不仅提高了语言建模性能,而且能够通过关系标注给定文本的实体跨度的后验概率。实验证明了基于单词的基线语言模型和先前合并知识图谱信息的方法的经验改进。定性分析进一步证明了该模型的学习能力,以预测适当的关系在上下文中。

成为VIP会员查看完整内容
0
122

论文摘要:知识图谱嵌入是一种将符号实体和关系投影到连续向量空间的方法,越来越受到人们的重视。以前的方法允许对每个实体或关系进行单一的静态嵌入,忽略它们的内在上下文性质,即。,实体和关系可能出现在不同的图上下文中,因此,它们具有不同的属性。该工作提出了一种新的基于上下文的知识图谱嵌入(CoKE)范式,该范式考虑了这种上下文性质,并学习了动态的、灵活的、完全上下文化的实体和关系嵌入。研究了两类图的上下文:边和路径,它们都被表示为实体和关系的序列。CoKE采用一个序列作为输入,并使用Transformer编码器获得上下文化的表示。因此,这些表现形式自然地适应输入,捕捉实体的上下文含义和其中的关系。通过对各种公共基准的评估,验证了CoKE在链路预测和路径查询应答方面的优越性。在几乎所有情况下,它的性能始终比当前的技术水平更好,或者至少与之相当,特别是在H@10的路径查询应答方面提高了19.7%。

代码链接:[https://github.com/paddlepaddle/models /tree/develop/PaddleKG/CoKE](https://github.com/paddlepaddle/models /tree/develop/PaddleKG/CoKE)

成为VIP会员查看完整内容
0
50

Knowledge graphs are important resources for many artificial intelligence tasks but often suffer from incompleteness. In this work, we propose to use pre-trained language models for knowledge graph completion. We treat triples in knowledge graphs as textual sequences and propose a novel framework named Knowledge Graph Bidirectional Encoder Representations from Transformer (KG-BERT) to model these triples. Our method takes entity and relation descriptions of a triple as input and computes scoring function of the triple with the KG-BERT language model. Experimental results on multiple benchmark knowledge graphs show that our method can achieve state-of-the-art performance in triple classification, link prediction and relation prediction tasks.

0
8
下载
预览
小贴士
相关主题
相关VIP内容
【AAAI2020知识图谱论文概述】Knowledge Graphs @ AAAI 2020
专知会员服务
87+阅读 · 2020年2月13日
专知会员服务
122+阅读 · 2020年2月13日
相关资讯
相关论文
Aidan Hogan,Eva Blomqvist,Michael Cochez,Claudia d'Amato,Gerard de Melo,Claudio Gutierrez,José Emilio Labra Gayo,Sabrina Kirrane,Sebastian Neumaier,Axel Polleres,Roberto Navigli,Axel-Cyrille Ngonga Ngomo,Sabbir M. Rashid,Anisa Rula,Lukas Schmelzeisen,Juan Sequeda,Steffen Staab,Antoine Zimmermann
79+阅读 · 2020年3月4日
Commonsense Knowledge Base Completion with Structural and Semantic Context
Chaitanya Malaviya,Chandra Bhagavatula,Antoine Bosselut,Yejin Choi
12+阅读 · 2019年12月19日
Chuxu Zhang,Huaxiu Yao,Chao Huang,Meng Jiang,Zhenhui Li,Nitesh V. Chawla
11+阅读 · 2019年11月26日
K-BERT: Enabling Language Representation with Knowledge Graph
Weijie Liu,Peng Zhou,Zhe Zhao,Zhiruo Wang,Qi Ju,Haotang Deng,Ping Wang
15+阅读 · 2019年9月17日
Liang Yao,Chengsheng Mao,Yuan Luo
8+阅读 · 2019年9月11日
HyperKG: Hyperbolic Knowledge Graph Embeddings for Knowledge Base Completion
Prodromos Kolyvakis,Alexandros Kalousis,Dimitris Kiritsis
4+阅读 · 2019年8月17日
DSKG: A Deep Sequential Model for Knowledge Graph Completion
Lingbing Guo,Qingheng Zhang,Weiyi Ge,Wei Hu,Yuzhong Qu
3+阅读 · 2018年12月30日
Ivana Balazevic,Carl Allen,Timothy M. Hospedales
5+阅读 · 2018年8月28日
Tommaso Soru,Stefano Ruberto,Diego Moussallem,Edgard Marx,Diego Esteves,Axel-Cyrille Ngonga Ngomo
7+阅读 · 2018年3月21日
Armand Joulin,Edouard Grave,Piotr Bojanowski,Maximilian Nickel,Tomas Mikolov
3+阅读 · 2017年10月30日
Top