We show that, for every $k\geq 2$, $C_{2k}$-freeness can be decided in $O(n^{1-1/k})$ rounds in the \CONGEST{} model by a randomized Monte-Carlo distributed algorithm with one-sided error probability $1/3$. This matches the best round-complexities of previously known algorithms for $k\in\{2,3,4,5\}$ by Drucker et al. [PODC'14] and Censor-Hillel et al. [DISC'20], but improves the complexities of the known algorithms for $k>5$ by Eden et al. [DISC'19], which were essentially of the form $\tilde O(n^{1-2/k^2})$. Our algorithm uses colored BFS-explorations with threshold, but with an original \emph{global} approach that enables to overcome a recent impossibility result by Fraigniaud et al. [SIROCCO'23] about using colored BFS-exploration with \emph{local} threshold for detecting cycles. We also show how to quantize our algorithm for achieving a round-complexity $\tilde O(n^{\frac{1}{2}-\frac{1}{2k}})$ in the quantum setting for deciding $C_{2k}$ freeness. Furthermore, this allows us to improve the known quantum complexities of the simpler problem of detecting cycles of length \emph{at most}~$2k$ by van Apeldoorn and de Vos [PODC'22]. Our quantization is in two steps. First, the congestion of our randomized algorithm is reduced, to the cost of reducing its success probability too. Second, the success probability is boosted using a new quantum framework derived from sequential algorithms, namely Monte-Carlo quantum amplification.
翻译:我们证明,对于任意 $k\\geq 2$,在\\CONGEST{}模型中可通过单侧错误概率为 $1/3$ 的随机蒙特卡洛分布式算法,以 $O(n^{1-1/k})$ 轮复杂度判定 $C_{2k}$ 无环性。该结果与 Drucker 等人 [PODC'14] 及 Censor-Hillel 等人 [DISC'20] 针对 $k\\in\\{2,3,4,5\\}$ 的已知最优轮复杂度算法相匹配,但改进了 Eden 等人 [DISC'19] 针对 $k>5$ 的已知算法复杂度(其形式本质上为 $\\tilde O(n^{1-2/k^2})$)。我们的算法采用带阈值的着色广度优先搜索探索,但通过一种创新的\\emph{全局}方法,克服了 Fraigniaud 等人 [SIROCCO'23] 最近关于使用\\emph{局部}阈值着色广度优先搜索探索检测环的不可能性结果。我们还展示了如何将算法量子化,以在量子环境下实现 $\\tilde O(n^{\\frac{1}{2}-\\frac{1}{2k}})$ 轮复杂度来判定 $C_{2k}$ 无环性。此外,这使我们能改进 van Apeldoorn 和 de Vos [PODC'22] 针对检测长度\\emph{至多}~$2k$ 环这一更简单问题的已知量子复杂度。我们的量子化过程分为两步:首先降低随机算法的通信拥塞,但代价是同时降低其成功概率;其次,利用源自序列算法的新量子框架(即蒙特卡洛量子放大)提升成功概率。