Physics-Informed Neural Networks (PINN) are emerging as a promising approach for quantitative parameter estimation of Magnetic Resonance Imaging (MRI). While existing deep learning methods can provide an accurate quantitative estimation of the T2 parameter, they still require large amounts of training data and lack theoretical support and a recognized gold standard. Thus, given the absence of PINN-based approaches for T2 estimation, we propose embedding the fundamental physics of MRI, the Bloch equation, in the loss of PINN, which is solely based on target scan data and does not require a pre-defined training database. Furthermore, by deriving rigorous upper bounds for both the T2 estimation error and the generalization error of the Bloch equation solution, we establish a theoretical foundation for evaluating the PINN's quantitative accuracy. Even without access to the ground truth or a gold standard, this theory enables us to estimate the error with respect to the real quantitative parameter T2. The accuracy of T2 mapping and the validity of the theoretical analysis are demonstrated on a numerical cardiac model and a water phantom, where our method exhibits excellent quantitative precision in the myocardial T2 range. Clinical applicability is confirmed in 94 acute myocardial infarction (AMI) patients, achieving low-error quantitative T2 estimation under the theoretical error bound, highlighting the robustness and potential of PINN.
翻译:物理信息神经网络(PINN)正成为磁共振成像(MRI)定量参数估计的一种有前景的方法。尽管现有的深度学习方法能够对T2参数提供准确的定量估计,但它们仍需要大量训练数据,且缺乏理论支持和公认的金标准。因此,鉴于目前尚无基于PINN的T2估计方法,我们提出将MRI的基本物理原理——布洛赫方程嵌入PINN的损失函数中,该方法仅基于目标扫描数据,无需预定义的训练数据库。此外,通过推导T2估计误差和布洛赫方程解泛化误差的严格上界,我们为评估PINN的定量准确性奠定了理论基础。即使无法获取真实值或金标准,该理论也能使我们估计相对于真实定量参数T2的误差。T2映射的准确性及理论分析的有效性在一个数值心脏模型和一个水模上得到验证,其中我们的方法在心肌T2范围内表现出优异的定量精度。临床适用性在94名急性心肌梗死(AMI)患者中得到确认,在理论误差界内实现了低误差的定量T2估计,突显了PINN的鲁棒性和潜力。