In 1989, Ne\v{s}et\v{r}il and Pudl\'ak posed the following challenging question: Do planar posets have bounded Boolean dimension? We show that every poset with a planar cover graph and a unique minimal element has Boolean dimension at most $13$. As a consequence, we are able to show that there is a reachability labeling scheme with labels consisting of $\mathcal{O}(\log n)$ bits for planar digraphs with a single source. The best known scheme for general planar digraphs uses labels with $\mathcal{O}(\log^2 n)$ bits [Thorup JACM 2004], and it remains open to determine whether a scheme using labels with $\mathcal{O}(\log n)$ bits exists. The Boolean dimension result is proved in tandem with a second result showing that the dimension of a poset with a planar cover graph and a unique minimal element is bounded by a linear function of its standard example number. However, one of the major challenges in dimension theory is to determine whether dimension is bounded in terms of standard example number for all posets with planar cover graphs.


翻译:1989年, Ne\ v{s} et\ v{r}il 和 Pudl\'ak 提出了以下具有挑战性的问题: 平面图状图状图状的尺寸与布尔的维度相联吗? 我们显示, 每一个带有平面覆盖图和独特最小元素的图状都有布尔的维度, 最多为 $13 美元。 因此, 我们能够显示, 有一个由 $\ mathcal{O} (\log n) 和 Pudl\'ak 组成的标签标签可达标性标签方案。 一般平面图的已知比特(log2 n) 使用 $\ mathcal{O} (log\log n) 的标签方案。 (log n) 和第二个结果显示, 一般平面图状图状图和独特最小元素的尺寸由其标准示例编号的线性函数所约束。 然而, 一个带有 $\ mas main screal screstrical sium situal situal situde 在标准图状图状图状中确定所有标准的维度的挑战。

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
253+阅读 · 2020年4月19日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2023年2月16日
VIP会员
相关VIP内容
相关资讯
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员