The advantage of quantum protocols lies in the inherent properties of the shared quantum states. These states are sometimes provided by sources that are not trusted, and therefore need to be verified. Finding secure and efficient quantum state verification protocols remains a big challenge, and recent works illustrate trade-offs between efficiency and security for different groups of states in restricted settings. However, whether a universal trade-off exists for all quantum states and all verification strategies remains unknown. In this work, we instantiate the categorical composable cryptography framework to show a fundamental limit for quantum state verification for all cut-and-choose approaches used to verify arbitrary quantum states. Our findings show that the prevailing cut-and-choose techniques cannot lead to quantum state verification protocols that are both efficient and secure.


翻译:暂无翻译

0
下载
关闭预览

相关内容

Group一直是研究计算机支持的合作工作、人机交互、计算机支持的协作学习和社会技术研究的主要场所。该会议将社会科学、计算机科学、工程、设计、价值观以及其他与小组工作相关的多个不同主题的工作结合起来,并进行了广泛的概念化。官网链接:https://group.acm.org/conferences/group20/
Top
微信扫码咨询专知VIP会员