Controllable, high-fidelity mesh editing remains a significant challenge in 3D content creation. Existing generative methods often struggle with complex geometries and fail to produce detailed results. We propose CraftMesh, a novel framework for high-fidelity generative mesh manipulation via Poisson Seamless Fusion. Our key insight is to decompose mesh editing into a pipeline that leverages the strengths of 2D and 3D generative models: we edit a 2D reference image, then generate a region-specific 3D mesh, and seamlessly fuse it into the original model. We introduce two core techniques: Poisson Geometric Fusion, which utilizes a hybrid SDF/Mesh representation with normal blending to achieve harmonious geometric integration, and Poisson Texture Harmonization for visually consistent texture blending. Experimental results demonstrate that CraftMesh outperforms state-of-the-art methods, delivering superior global consistency and local detail in complex editing tasks.


翻译:可控的高保真网格编辑在三维内容创作中仍面临重大挑战。现有生成方法常难以处理复杂几何结构,且无法生成精细结果。本文提出CraftMesh——一种通过泊松无缝融合实现高保真生成式网格操作的新型框架。我们的核心思路是将网格编辑解构为能融合2D与3D生成模型优势的流程:先编辑二维参考图像,再生成区域特定的三维网格,最后将其无缝融合至原始模型。我们引入两项核心技术:泊松几何融合——采用混合符号距离场/网格表示结合法向混合实现协调的几何整合,以及泊松纹理协调——实现视觉一致的纹理融合。实验结果表明,CraftMesh在复杂编辑任务中优于现有先进方法,在全局一致性与局部细节方面均表现出色。

0
下载
关闭预览

相关内容

DeepSeek模型综述:V1 V2 V3 R1-Zero
专知会员服务
116+阅读 · 2月11日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
108+阅读 · 2020年5月3日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
VIP会员
相关基金
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员