We present DeepBridge, an 80K-line Python library that unifies multi-dimensional validation, automatic compliance verification, knowledge distillation, and synthetic data generation. DeepBridge offers: (i) 5 validation suites (fairness with 15 metrics, robustness with weakness detection, uncertainty via conformal prediction, resilience with 5 drift types, hyperparameter sensitivity), (ii) automatic EEOC/ECOA/GDPR verification, (iii) multi-format reporting system (interactive/static HTML, PDF, JSON), (iv) HPM-KD framework for knowledge distillation with meta-learning, and (v) scalable synthetic data generation via Dask. Through 6 case studies (credit scoring, hiring, healthcare, mortgage, insurance, fraud) we demonstrate that DeepBridge: reduces validation time by 89% (17 min vs. 150 min with fragmented tools), automatically detects fairness violations with complete coverage (10/10 features vs. 2/10 from existing tools), generates audit-ready reports in minutes. HPM-KD demonstrates consistent superiority across compression ratios 2.3--7x (CIFAR100): +1.00--2.04pp vs. Direct Training (p<0.05), confirming that Knowledge Distillation is effective at larger teacher-student gaps. Usability study with 20 participants shows SUS score 87.5 (top 10%, ``excellent''), 95% success rate, and low cognitive load (NASA-TLX 28/100). DeepBridge is open-source under MIT license at https://github.com/deepbridge/deepbridge, with complete documentation at https://deepbridge.readthedocs.io
翻译:本文提出DeepBridge,一个包含8万行代码的Python库,它统一整合了多维验证、自动合规性核查、知识蒸馏与合成数据生成功能。该框架提供:(i) 5类验证套件(含15项指标的公平性验证、带弱点检测的鲁棒性验证、基于共形预测的不确定性验证、涵盖5类漂移类型的弹性验证、超参数敏感性验证);(ii) 自动EEOC/ECOA/GDPR合规性验证;(iii) 支持多格式的报告系统(交互式/静态HTML、PDF、JSON);(iv) 融合元学习的知识蒸馏框架HPM-KD;(v) 基于Dask的可扩展合成数据生成。通过6个案例研究(信用评分、招聘、医疗保健、抵押贷款、保险、欺诈检测),我们证明DeepBridge能够:将验证时间减少89%(使用碎片化工具需150分钟,本框架仅需17分钟);以全覆盖方式自动检测公平性违规(现有工具仅能检测2/10特征,本框架可检测10/10特征);在数分钟内生成可直接用于审计的报告。HPM-KD框架在2.3-7倍压缩比范围内(CIFAR100数据集)均表现出稳定优势:相较于直接训练方法提升1.00-2.04个百分点(p<0.05),证实知识蒸馏在较大师生模型差距下依然有效。针对20名参与者的可用性研究显示,系统可用性量表(SUS)得分达87.5(位列前10%,评级为“优秀”),任务完成成功率95%,且认知负荷较低(NASA-TLX得分28/100)。DeepBridge已在MIT开源协议下发布,项目地址为https://github.com/deepbridge/deepbridge,完整文档详见https://deepbridge.readthedocs.io。