We present an algorithm that releases a pure differentially private (under the replacement neighboring relation) sparse histogram for $n$ participants over a domain of size $d \gg n$. Our method achieves the optimal $\ell_\infty$-estimation error and runs in strictly $O(n)$ time in the Word-RAM model, improving upon the previous best deterministic-time bound of $\tilde{O}(n^2)$ and resolving the open problem of breaking this quadratic barrier (Balcer and Vadhan, 2019). Moreover, the algorithm admits an efficient circuit implementation, enabling the first near-linear communication and computation cost pure DP histogram MPC protocol with optimal $\ell_\infty$-estimation error. Central to our algorithm is a novel **private item blanket** technique with target-length padding, which hides differences in the supports of neighboring histograms while remaining efficiently implementable.
翻译:我们提出一种算法,可为定义域规模$d \gg n$的$n$个参与者发布满足纯差分隐私(基于替换邻接关系)的稀疏直方图。该方法在Word-RAM模型中以严格$O(n)$时间复杂度实现最优$\ell_\infty$估计误差,突破了先前最佳确定性时间边界$\tilde{O}(n^2)$,解决了突破该二次时间障碍的公开问题(Balcer与Vadhan,2019)。此外,该算法支持高效电路实现,从而首次构建出具有最优$\ell_\infty$估计误差、接近线性通信与计算成本的纯差分隐私直方图多方计算协议。我们算法的核心是采用目标长度填充的**隐私项覆盖**新技术,该技术能有效隐藏相邻直方图支撑集之间的差异,同时保持高效可实施性。