Generating structural query language (SQL) queries from natural language is a long-standing open problem. Answering a natural language question about a database table requires modeling complex interactions between the columns of the table and the question. In this paper, we apply the synthesizing approach to solve this problem. Based on the structure of SQL queries, we break down the model to three sub-modules and design specific deep neural networks for each of them. Taking inspiration from the similar machine reading task, we employ the bidirectional attention mechanisms and character-level embedding with convolutional neural networks (CNNs) to improve the result. Experimental evaluations show that our model achieves the state-of-the-art results in WikiSQL dataset.


翻译:从自然语言中生成结构性查询语言( SQL) 是一个长期存在的未决问题。 回答关于数据库表格的自然语言问题,需要将表格各列和问题之间的复杂互动进行模型化。 在本文中,我们应用合成方法解决这一问题。 根据 SQL 查询的结构,我们将模型分成三个子模块,并为每个模块设计具体的深神经网络。 受类似机器阅读任务的启发,我们利用双向关注机制和字符级嵌入进进进进进化神经网络(CNNs)来改进结果。 实验评估显示,我们的模型实现了WikisQL数据集的最新结果。

4
下载
关闭预览

相关内容

SQL 全名是结构化查询语言,是用于数据库中的标准数据查询语言,IBM 公司最早使用在其开发的数据库系统中。
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
从Seq2seq到Attention模型到Self Attention(二)
量化投资与机器学习
23+阅读 · 2018年10月9日
暗通沟渠:Multi-lingual Attention
我爱读PAMI
7+阅读 · 2018年2月24日
Adversarial Mutual Information for Text Generation
Arxiv
13+阅读 · 2020年6月30日
VIP会员
Top
微信扫码咨询专知VIP会员