Recent approaches to causal inference have focused on the identification and estimation of \textit{causal effects}, defined as (properties of) the distribution of counterfactual outcomes under hypothetical actions that alter the nodes of a graphical model. In this article we explore an alternative approach using the concept of \textit{causal influence}, defined through operations that alter the information propagated through the edges of a directed acyclic graph. Causal influence may be more useful than causal effects in settings in which interventions on the causal agents are infeasible or of no substantive interest, for example when considering gender, race, or genetics as a causal agent. Furthermore, the "information transfer" interventions proposed allow us to solve a long-standing problem in causal mediation analysis, namely the non-parametric identification of path-specific effects in the presence of treatment-induced mediator-outcome confounding. We propose efficient non-parametric estimators for a covariance version of the proposed causal influence measures, using data-adaptive regression coupled with semi-parametric efficiency theory to address model misspecification bias while retaining $\sqrt{n}$-consistency and asymptotic normality. We illustrate the use of our methods in two examples using publicly available data.


翻译:摘要:近年来,因果推断方法已经集中于识别和估计“因果效应”,这被定义为在图形模型中改变节点时,在假设操作下的反事实结果分布的特性。在本文中,我们探讨了另一种基于操作威力的方法,该方法通过改变由一个有向无环图中的边传播的信息来定义“因果影响”。当考虑到性别、种族或基因作为因果因素的情况时,因果影响可能比因果效应更有用,因为这些情况下对因果因素的干预不可行或无实质性兴趣。此外,所提出的“信息传输”干预方法使我们能够解决因治疗诱导的介质结果混淆而导致的路径特定效应的非参数识别问题。我们提出了用于所提出的因果影响度量的协方差版本的高效非参数估计器,采用数据自适应回归结合半参数效率理论,以解决模型偏差而保留$\sqrt{n}$-一致性和渐近正态性。我们使用公开数据在两个例子中说明了我们方法的使用。

0
下载
关闭预览

相关内容

【干货书】工程和科学中的概率和统计,
专知会员服务
57+阅读 · 2022年12月24日
不可错过!700+ppt《因果推理》课程!杜克大学Fan Li教程
专知会员服务
68+阅读 · 2022年7月11日
因果推断,Causal Inference:The Mixtape
专知会员服务
102+阅读 · 2021年8月27日
因果图,Causal Graphs,52页ppt
专知会员服务
238+阅读 · 2020年4月19日
因果效应估计组合拳:Reweighting和Representation
PaperWeekly
0+阅读 · 2022年9月2日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
5+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
26+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
27+阅读 · 2023年2月10日
Arxiv
14+阅读 · 2022年10月15日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
108+阅读 · 2020年2月5日
VIP会员
相关资讯
因果效应估计组合拳:Reweighting和Representation
PaperWeekly
0+阅读 · 2022年9月2日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
5+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
26+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员