《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc

热门内容

Generating texts which express complex ideas spanning multiple sentences requires a structured representation of their content (document plan), but these representations are prohibitively expensive to manually produce. In this work, we address the problem of generating coherent multi-sentence texts from the output of an information extraction system, and in particular a knowledge graph. Graphical knowledge representations are ubiquitous in computing, but pose a significant challenge for text generation techniques due to their non-hierarchical nature, collapsing of long-distance dependencies, and structural variety. We introduce a novel graph transforming encoder which can leverage the relational structure of such knowledge graphs without imposing linearization or hierarchical constraints. Incorporated into an encoder-decoder setup, we provide an end-to-end trainable system for graph-to-text generation that we apply to the domain of scientific text. Automatic and human evaluations show that our technique produces more informative texts which exhibit better document structure than competitive encoder-decoder methods.

21+
0+
下载
预览
更多热门内容

最新内容

The goal of lossy data compression is to reduce the storage cost of a data set $X$ while retaining as much information as possible about something ($Y$) that you care about. For example, what aspects of an image $X$ contain the most information about whether it depicts a cat? Mathematically, this corresponds to finding a mapping $X\to Z\equiv f(X)$ that maximizes the mutual information $I(Z,Y)$ while the entropy $H(Z)$ is kept below some fixed threshold. We present a method for mapping out the Pareto frontier for classification tasks, reflecting the tradeoff between retained entropy and class information. We first show how a random variable $X$ (an image, say) drawn from a class $Y\in\{1,...,n\}$ can be distilled into a vector $W=f(X)\in \mathbb{R}^{n-1}$ losslessly, so that $I(W,Y)=I(X,Y)$; for example, for a binary classification task of cats and dogs, each image $X$ is mapped into a single real number $W$ retaining all information that helps distinguish cats from dogs. For the $n=2$ case of binary classification, we then show how $W$ can be further compressed into a discrete variable $Z=g_\beta(W)\in\{1,...,m_\beta\}$ by binning $W$ into $m_\beta$ bins, in such a way that varying the parameter $\beta$ sweeps out the full Pareto frontier, solving a generalization of the Discrete Information Bottleneck (DIB) problem. We argue that the most interesting points on this frontier are "corners" maximizing $I(Z,Y)$ for a fixed number of bins $m=2,3...$ which can be conveniently be found without multiobjective optimization. We apply this method to the CIFAR-10, MNIST and Fashion-MNIST datasets, illustrating how it can be interpreted as an information-theoretically optimal image clustering algorithm.

0+
0+
下载
预览
更多最新内容

最新论文

The goal of lossy data compression is to reduce the storage cost of a data set $X$ while retaining as much information as possible about something ($Y$) that you care about. For example, what aspects of an image $X$ contain the most information about whether it depicts a cat? Mathematically, this corresponds to finding a mapping $X\to Z\equiv f(X)$ that maximizes the mutual information $I(Z,Y)$ while the entropy $H(Z)$ is kept below some fixed threshold. We present a method for mapping out the Pareto frontier for classification tasks, reflecting the tradeoff between retained entropy and class information. We first show how a random variable $X$ (an image, say) drawn from a class $Y\in\{1,...,n\}$ can be distilled into a vector $W=f(X)\in \mathbb{R}^{n-1}$ losslessly, so that $I(W,Y)=I(X,Y)$; for example, for a binary classification task of cats and dogs, each image $X$ is mapped into a single real number $W$ retaining all information that helps distinguish cats from dogs. For the $n=2$ case of binary classification, we then show how $W$ can be further compressed into a discrete variable $Z=g_\beta(W)\in\{1,...,m_\beta\}$ by binning $W$ into $m_\beta$ bins, in such a way that varying the parameter $\beta$ sweeps out the full Pareto frontier, solving a generalization of the Discrete Information Bottleneck (DIB) problem. We argue that the most interesting points on this frontier are "corners" maximizing $I(Z,Y)$ for a fixed number of bins $m=2,3...$ which can be conveniently be found without multiobjective optimization. We apply this method to the CIFAR-10, MNIST and Fashion-MNIST datasets, illustrating how it can be interpreted as an information-theoretically optimal image clustering algorithm.

0+
0+
下载
预览
更多最新论文
Top