《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc

热门内容

Lots of learning tasks require dealing with graph data which contains rich relation information among elements. Modeling physics system, learning molecular fingerprints, predicting protein interface, and classifying diseases require that a model to learn from graph inputs. In other domains such as learning from non-structural data like texts and images, reasoning on extracted structures, like the dependency tree of sentences and the scene graph of images, is an important research topic which also needs graph reasoning models. Graph neural networks (GNNs) are connectionist models that capture the dependence of graphs via message passing between the nodes of graphs. Unlike standard neural networks, graph neural networks retain a state that can represent information from its neighborhood with an arbitrary depth. Although the primitive graph neural networks have been found difficult to train for a fixed point, recent advances in network architectures, optimization techniques, and parallel computation have enabled successful learning with them. In recent years, systems based on graph convolutional network (GCN) and gated graph neural network (GGNN) have demonstrated ground-breaking performance on many tasks mentioned above. In this survey, we provide a detailed review over existing graph neural network models, systematically categorize the applications, and propose four open problems for future research.

0
67
下载
预览

最新内容

The emergence and progression of multiple chronic conditions (MCC) over time often form a dynamic network that depends on patient's modifiable risk factors and their interaction with non-modifiable risk factors and existing conditions. Continuous time Bayesian networks (CTBNs) are effective methods for modeling the complex network of MCC relationships over time. However, CTBNs are not able to effectively formulate the dynamic impact of patient's modifiable risk factors on the emergence and progression of MCC. Considering a functional CTBN (FCTBN) to represent the underlying structure of the MCC relationships with respect to individuals' risk factors and existing conditions, we propose a nonlinear state-space model based on Extended Kalman filter (EKF) to capture the dynamics of the patients' modifiable risk factors and existing conditions on the MCC evolution over time. We also develop a tensor control chart to dynamically monitor the effect of changes in the modifiable risk factors of individual patients on the risk of new chronic conditions emergence. We validate the proposed approach based on a combination of simulation and real data from a dataset of 385 patients from Cameron County Hispanic Cohort (CCHC) over multiple years. The dataset examines the emergence of 5 chronic conditions (Diabetes, Obesity, Cognitive Impairment, Hyperlipidemia, and Hypertension) based on 4 modifiable risk factors representing lifestyle behaviors (Diet, Exercise, Smoking Habit, and Drinking Habit) and 3 non-modifiable risk factors, including demographic information (Age, Gender, Education). The results demonstrate the effectiveness of the proposed methodology for dynamic prediction and monitoring of the risk of MCC emergence in individual patients.

0
0
下载
预览

最新论文

The emergence and progression of multiple chronic conditions (MCC) over time often form a dynamic network that depends on patient's modifiable risk factors and their interaction with non-modifiable risk factors and existing conditions. Continuous time Bayesian networks (CTBNs) are effective methods for modeling the complex network of MCC relationships over time. However, CTBNs are not able to effectively formulate the dynamic impact of patient's modifiable risk factors on the emergence and progression of MCC. Considering a functional CTBN (FCTBN) to represent the underlying structure of the MCC relationships with respect to individuals' risk factors and existing conditions, we propose a nonlinear state-space model based on Extended Kalman filter (EKF) to capture the dynamics of the patients' modifiable risk factors and existing conditions on the MCC evolution over time. We also develop a tensor control chart to dynamically monitor the effect of changes in the modifiable risk factors of individual patients on the risk of new chronic conditions emergence. We validate the proposed approach based on a combination of simulation and real data from a dataset of 385 patients from Cameron County Hispanic Cohort (CCHC) over multiple years. The dataset examines the emergence of 5 chronic conditions (Diabetes, Obesity, Cognitive Impairment, Hyperlipidemia, and Hypertension) based on 4 modifiable risk factors representing lifestyle behaviors (Diet, Exercise, Smoking Habit, and Drinking Habit) and 3 non-modifiable risk factors, including demographic information (Age, Gender, Education). The results demonstrate the effectiveness of the proposed methodology for dynamic prediction and monitoring of the risk of MCC emergence in individual patients.

0
0
下载
预览
Top