《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc

热门内容

Lots of learning tasks require dealing with graph data which contains rich relation information among elements. Modeling physics system, learning molecular fingerprints, predicting protein interface, and classifying diseases require that a model to learn from graph inputs. In other domains such as learning from non-structural data like texts and images, reasoning on extracted structures, like the dependency tree of sentences and the scene graph of images, is an important research topic which also needs graph reasoning models. Graph neural networks (GNNs) are connectionist models that capture the dependence of graphs via message passing between the nodes of graphs. Unlike standard neural networks, graph neural networks retain a state that can represent information from its neighborhood with an arbitrary depth. Although the primitive graph neural networks have been found difficult to train for a fixed point, recent advances in network architectures, optimization techniques, and parallel computation have enabled successful learning with them. In recent years, systems based on graph convolutional network (GCN) and gated graph neural network (GGNN) have demonstrated ground-breaking performance on many tasks mentioned above. In this survey, we provide a detailed review over existing graph neural network models, systematically categorize the applications, and propose four open problems for future research.

0
67
下载
预览

最新内容

We propose a novel framework for cross-lingual content flagging with limited target-language data, which significantly outperforms prior work in terms of predictive performance. The framework is based on a nearest-neighbour architecture. It is a modern instantiation of the vanilla k-nearest neighbour model, as we use Transformer representations in all its components. Our framework can adapt to new source-language instances, without the need to be retrained from scratch. Unlike prior work on neighbourhood-based approaches, we encode the neighbourhood information based on query--neighbour interactions. We propose two encoding schemes and we show their effectiveness using both qualitative and quantitative analysis. Our evaluation results on eight languages from two different datasets for abusive language detection show sizable improvements of up to 9.5 F1 points absolute (for Italian) over strong baselines. On average, we achieve 3.6 absolute F1 points of improvement for the three languages in the Jigsaw Multilingual dataset and 2.14 points for the WUL dataset.

0
0
下载
预览

最新论文

We propose a novel framework for cross-lingual content flagging with limited target-language data, which significantly outperforms prior work in terms of predictive performance. The framework is based on a nearest-neighbour architecture. It is a modern instantiation of the vanilla k-nearest neighbour model, as we use Transformer representations in all its components. Our framework can adapt to new source-language instances, without the need to be retrained from scratch. Unlike prior work on neighbourhood-based approaches, we encode the neighbourhood information based on query--neighbour interactions. We propose two encoding schemes and we show their effectiveness using both qualitative and quantitative analysis. Our evaluation results on eight languages from two different datasets for abusive language detection show sizable improvements of up to 9.5 F1 points absolute (for Italian) over strong baselines. On average, we achieve 3.6 absolute F1 points of improvement for the three languages in the Jigsaw Multilingual dataset and 2.14 points for the WUL dataset.

0
0
下载
预览
参考链接
Top
微信扫码咨询专知VIP会员