This work proposes the use of multivariate global sensitivity analysis for assessing the impact of uncertain electric machine design parameters on efficiency maps and profiles. Contrary to the common approach of applying variance-based (Sobol') sensitivity analysis elementwise, multivariate sensitivity analysis provides a single sensitivity index per parameter, thus allowing for a holistic estimation of parameter importance over the full efficiency map or profile. Its benefits are demonstrated on permanent magnet synchronous machine models of different fidelity. Computations based on Monte Carlo sampling and polynomial chaos expansions are compared in terms of computational cost. The sensitivity analysis results are subsequently used to simplify the models, by fixing non-influential parameters to their nominal values and allowing random variations only for influential parameters. Uncertainty estimates obtained with the full and reduced models confirm the validity of model simplification guided by multivariate sensitivity analysis.


翻译:本研究提出采用多元全局敏感性分析来评估不确定的电机设计参数对效率图与效率曲线的影响。与常见的逐元素应用基于方差(Sobol')敏感性分析的方法不同,多元敏感性分析为每个参数提供一个单一的敏感性指数,从而能够在整个效率图或效率曲线上对参数重要性进行整体评估。其优势在不同保真度的永磁同步电机模型上得到了验证。基于蒙特卡洛采样和多项式混沌展开的计算方法在计算成本方面进行了比较。随后,利用敏感性分析结果简化模型:将非影响参数固定为其标称值,仅允许影响参数进行随机变化。通过完整模型与简化模型获得的不确定性估计结果证实了基于多元敏感性分析的模型简化方法的有效性。

0
下载
关闭预览

相关内容

【ICML2025】时序分布漂移下的自适应估计与学习
专知会员服务
12+阅读 · 5月25日
【ICML2023】SEGA:结构熵引导的图对比学习锚视图
专知会员服务
22+阅读 · 2023年5月10日
【WWW2021】场矩阵分解机推荐系统
专知会员服务
33+阅读 · 2021年2月27日
NLG任务评价指标BLEU与ROUGE
AINLP
21+阅读 · 2020年5月25日
论文笔记之Feature Selective Networks for Object Detection
统计学习与视觉计算组
21+阅读 · 2018年7月26日
误差反向传播——CNN
统计学习与视觉计算组
30+阅读 · 2018年7月12日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
NLG任务评价指标BLEU与ROUGE
AINLP
21+阅读 · 2020年5月25日
论文笔记之Feature Selective Networks for Object Detection
统计学习与视觉计算组
21+阅读 · 2018年7月26日
误差反向传播——CNN
统计学习与视觉计算组
30+阅读 · 2018年7月12日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员