In this paper, we study the exact learning problem for weighted graphs, where we are given the vertex set, $V$, of a weighted graph, $G=(V,E,w)$, but we are not given $E$. The problem, which is also known as graph reconstruction, is to determine all the edges of $E$, including their weights, by asking queries about $G$ from an oracle. As we observe, using simple shortest-path length queries is not sufficient, in general, to learn a weighted graph. So we study a number of scenarios where it is possible to learn $G$ using a subquadratic number of composite queries, which combine two or three simple queries.


翻译:本文研究加权图的精确学习问题:给定加权图G=(V,E,w)的顶点集V,但未知边集E。该问题(亦称为图重构)旨在通过向预言机询问关于G的查询,确定E中所有边及其权重。我们观察到,仅使用简单的最短路径长度查询通常不足以学习加权图。因此,我们研究了若干场景,在这些场景中可通过亚二次数量的复合查询(结合两个或三个简单查询)来学习图G。

0
下载
关闭预览

相关内容

【ICML2023】SEGA:结构熵引导的图对比学习锚视图
专知会员服务
22+阅读 · 2023年5月10日
专知会员服务
12+阅读 · 2021年6月20日
专知会员服务
29+阅读 · 2020年10月2日
【CVPR2020-旷视】DPGN:分布传播图网络的小样本学习
专知会员服务
28+阅读 · 2020年4月1日
【NeurIPS2019】图变换网络:Graph Transformer Network
论文浅尝 | Interaction Embeddings for Prediction and Explanation
开放知识图谱
11+阅读 · 2019年2月1日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
8+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关VIP内容
【ICML2023】SEGA:结构熵引导的图对比学习锚视图
专知会员服务
22+阅读 · 2023年5月10日
专知会员服务
12+阅读 · 2021年6月20日
专知会员服务
29+阅读 · 2020年10月2日
【CVPR2020-旷视】DPGN:分布传播图网络的小样本学习
专知会员服务
28+阅读 · 2020年4月1日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
8+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员