Large Language Models (LLMs) have recently demonstrated remarkable performance in generating high-quality tabular synthetic data. In practice, two primary approaches have emerged for adapting LLMs to tabular data generation: (i) fine-tuning smaller models directly on tabular datasets, and (ii) prompting larger models with examples provided in context. In this work, we show that popular implementations from both regimes exhibit a tendency to compromise privacy by reproducing memorized patterns of numeric digits from their training data. To systematically analyze this risk, we introduce a simple No-box Membership Inference Attack (MIA) called LevAtt that assumes adversarial access to only the generated synthetic data and targets the string sequences of numeric digits in synthetic observations. Using this approach, our attack exposes substantial privacy leakage across a wide range of models and datasets, and in some cases, is even a perfect membership classifier on state-of-the-art models. Our findings highlight a unique privacy vulnerability of LLM-based synthetic data generation and the need for effective defenses. To this end, we propose two methods, including a novel sampling strategy that strategically perturbs digits during generation. Our evaluation demonstrates that this approach can defeat these attacks with minimal loss of fidelity and utility of the synthetic data.
翻译:大型语言模型(LLMs)近期在生成高质量表格合成数据方面展现出卓越性能。实践中,将LLMs应用于表格数据生成主要采用两种方法:(i)直接在表格数据集上微调较小模型,以及(ii)通过上下文示例提示较大模型。本研究表明,这两种主流实现方案均存在泄露隐私的风险,即可能复现训练数据中数字字符串的记忆化模式。为系统分析此风险,我们提出一种名为LevAtt的简单无盒成员推理攻击方法,该方法仅假设攻击者可访问生成的合成数据,并针对合成观测值中的数字字符串序列进行攻击。通过该攻击方法,我们在多种模型与数据集上均发现显著的隐私泄露现象,在某些先进模型中甚至可实现完美的成员分类。我们的研究结果揭示了基于LLM的合成数据生成所特有的隐私脆弱性,以及建立有效防御机制的必要性。为此,我们提出两种防御方法,包括一种在生成过程中对数字进行策略性扰动的新型采样策略。评估结果表明,该方法能以合成数据的保真度和效用最小损失为代价,有效抵御此类攻击。