Metaheuristic algorithms are widely used for solving complex problems due to their ability to provide near-optimal solutions. But the execution time of these algorithms increases with the problem size and/or solution space. And, to get more promising results, we have to execute these algorithms for a large number of iterations, requiring a large amount of time and this is one of the main issues found with these algorithms. To handle the same, researchers are now-a-days working on design and development of parallel versions of state-of-the-art metaheuristic optimization algorithms. We, in this paper, present a CUDA-based parallelization of state-of-the-art Artificial Protozoa Optimizer leveraging GPU acceleration. We implement both the existing sequential version and the proposed parallel version of Artificial Protozoa Optimizer for a performance comparison. Our experimental results calculated over a set of CEC2022 benchmark functions demonstrate a significant performance gain i.e. up to 6.7 times speed up is achieved with proposed parallel version. We also use a real world application, i.e., Image Thresholding to compare both algorithms.
翻译:元启发式算法因其能够提供近似最优解而被广泛应用于求解复杂问题。然而,这些算法的执行时间随着问题规模和/或解空间的增大而增加。为了获得更具前景的结果,我们必须对这些算法执行大量迭代,这需要大量时间,这是此类算法面临的主要问题之一。为解决这一问题,研究人员当前正致力于设计和开发前沿元启发式优化算法的并行版本。本文提出了一种基于CUDA、利用GPU加速的前沿人工原生动物优化器并行化方法。我们实现了现有的人工原生动物优化器串行版本与所提出的并行版本,以进行性能比较。基于一组CEC2022基准函数的实验结果表明,所提出的并行版本实现了显著的性能提升,即最高可达6.7倍的加速比。我们还使用实际应用——图像阈值分割——对两种算法进行了比较。