Medical image segmentation requires large annotated datasets, creating a significant bottleneck for clinical applications. While few-shot segmentation methods can learn from minimal examples, existing approaches demonstrate suboptimal performance in precise boundary delineation for medical images, particularly when anatomically similar regions appear without sufficient spatial context. We propose AGENet (Adaptive Geodesic Edge-aware Network), a novel framework that incorporates spatial relationships through edge-aware geodesic distance learning. Our key insight is that medical structures follow predictable geometric patterns that can guide prototype extraction even with limited training data. Unlike methods relying on complex architectural components or heavy neural networks, our approach leverages computationally lightweight geometric modeling. The framework combines three main components: (1) An edge-aware geodesic distance learning module that respects anatomical boundaries through iterative Fast Marching refinement, (2) adaptive prototype extraction that captures both global structure and local boundary details via spatially-weighted aggregation, and (3) adaptive parameter learning that automatically adjusts to different organ characteristics. Extensive experiments across diverse medical imaging datasets demonstrate improvements over state-of-the-art methods. Notably, our method reduces boundary errors compared to existing approaches while maintaining computational efficiency, making it highly suitable for clinical applications requiring precise segmentation with limited annotated data.
翻译:医学图像分割需要大量标注数据集,这为临床应用带来了显著瓶颈。虽然少样本分割方法能够从少量样本中学习,但现有方法在医学图像的精确边界描绘方面表现欠佳,尤其是在解剖结构相似区域缺乏足够空间上下文的情况下。我们提出AGENet(自适应测地边缘感知网络),这是一种通过边缘感知测地距离学习融入空间关系的新型框架。我们的核心见解是:即使训练数据有限,医学结构遵循的可预测几何模式仍能指导原型提取。与依赖复杂架构组件或重型神经网络的方法不同,我们的方法采用计算轻量级的几何建模。该框架包含三个主要组件:(1) 通过迭代快速推进法优化的边缘感知测地距离学习模块,该模块遵循解剖边界;(2) 通过空间加权聚合捕获全局结构和局部边界细节的自适应原型提取模块;(3) 自动适应不同器官特征的自适应参数学习模块。在多样化医学影像数据集上的大量实验表明,本方法优于现有最先进方法。值得注意的是,与现有方法相比,我们的方法在保持计算效率的同时减少了边界误差,这使其非常适合需要有限标注数据实现精确分割的临床应用。