We consider the distribution of the top eigenvector $\widehat{v}$ of a spiked matrix model of the form $H = θvv^* + W$, in the supercritical regime where $H$ has an outlier eigenvalue of comparable magnitude to $\|W\|$. We show that, if $v$ is sufficiently delocalized, then the distribution of the individual entries of $\widehat{v}$ (not, we emphasize, merely the inner product $\langle \widehat{v}, v\rangle$) is universal over a large class of generalized Wigner matrices $W$ having independent entries, depending only on the first two moments of the distributions of the entries of $W$. This complements the observation of Capitaine and Donati-Martin (2018) that these distributions are not universal when $v$ is instead sufficiently localized. Further, for $W$ having entrywise variances close to constant and thus resembling a Wigner matrix, we show by comparing to the case of $W$ drawn from the Gaussian orthogonal or unitary ensembles that averages of entrywise functions of $\widehat{v}$ behave as they would if $\widehat{v}$ had Gaussian fluctuations around a suitable multiple of $v$. We apply these results to study spectral algorithms followed by rounding procedures in dense stochastic block models and synchronization problems over the cyclic and circle groups, obtaining the first precise asymptotic characterizations of the error rates of such algorithms.
翻译:我们考虑尖峰矩阵模型 $H = θvv^* + W$ 的顶部特征向量 $\widehat{v}$ 的分布,其中 $H$ 处于超临界区域,其特征值异常值与 $\|W\|$ 的幅度相当。我们证明,若 $v$ 充分去局域化,则 $\widehat{v}$ 各分量的分布(需强调,这不仅是内积 $\langle \widehat{v}, v\rangle$)在具有独立分量的广义Wigner矩阵 $W$ 的广泛类别中具有普适性,仅取决于 $W$ 分量分布的一阶和二阶矩。这补充了Capitaine与Donati-Martin(2018)的观察:当 $v$ 充分局域化时,这些分布并不普适。进一步地,对于分量方差接近常数、因而近似于Wigner矩阵的 $W$,我们通过与从高斯正交系综或酉系综抽取的 $W$ 情形比较,证明 $\widehat{v}$ 的分量函数平均值的行为,如同 $\widehat{v}$ 在 $v$ 的适当倍数附近具有高斯涨落。我们将这些结果应用于稠密随机块模型及循环群与圆群上的同步问题中经圆整处理的谱算法,首次获得了此类算法误差率的精确渐近刻画。