High-resolution remote sensing imagery increasingly contains dense clusters of tiny objects, the detection of which is extremely challenging due to severe mutual occlusion and limited pixel footprints. Existing detection methods typically allocate computational resources uniformly, failing to adaptively focus on these density-concentrated regions, which hinders feature learning effectiveness. To address these limitations, we propose the Dense Region Mining Network (DRMNet), which leverages density maps as explicit spatial priors to guide adaptive feature learning. First, we design a Density Generation Branch (DGB) to model object distribution patterns, providing quantifiable priors that guide the network toward dense regions. Second, to address the computational bottleneck of global attention, our Dense Area Focusing Module (DAFM) uses these density maps to identify and focus on dense areas, enabling efficient local-global feature interaction. Finally, to mitigate feature degradation during hierarchical extraction, we introduce a Dual Filter Fusion Module (DFFM). It disentangles multi-scale features into high- and low-frequency components using a discrete cosine transform and then performs density-guided cross-attention to enhance complementarity while suppressing background interference. Extensive experiments on the AI-TOD and DTOD datasets demonstrate that DRMNet surpasses state-of-the-art methods, particularly in complex scenarios with high object density and severe occlusion.
翻译:高分辨率遥感图像中日益包含密集的微小目标簇,由于严重的相互遮挡和有限的像素覆盖范围,其检测极具挑战性。现有检测方法通常均匀分配计算资源,未能自适应地聚焦于这些密度集中区域,从而阻碍了特征学习的有效性。为解决这些局限性,我们提出密集区域挖掘网络(DRMNet),该网络利用密度图作为显式空间先验来引导自适应特征学习。首先,我们设计了密度生成分支(DGB)以建模目标分布模式,提供可量化的先验来引导网络关注密集区域。其次,针对全局注意力的计算瓶颈,我们的密集区域聚焦模块(DAFM)利用这些密度图识别并聚焦于密集区域,实现高效的局部-全局特征交互。最后,为缓解层次化特征提取过程中的特征退化问题,我们引入了双滤波器融合模块(DFFM)。该模块使用离散余弦变换将多尺度特征解耦为高频和低频分量,然后执行密度引导的交叉注意力以增强特征互补性,同时抑制背景干扰。在AI-TOD和DTOD数据集上的大量实验表明,DRMNet在目标密度高、遮挡严重的复杂场景中表现尤为突出,超越了现有最先进方法。