The outbreak of the coronavirus disease in Nigeria and all over the world in 2019/2020 caused havoc on the world's economy and put a strain on global healthcare facilities and personnel. It also threw up many opportunities to improve processes using artificial intelligence techniques like big data analytics and business intelligence. The need to speedily make decisions that could have far-reaching effects is prompting the boom in data analytics which is achieved via exploratory data analysis (EDA) to see trends, patterns, and relationships in the data. Today, big data analytics is revolutionizing processes and helping improve productivity and decision-making capabilities in all aspects of life. The large amount of heterogeneous and, in most cases, opaque data now available has made it possible for researchers and businesses of all sizes to effectively deploy data analytics to gain action-oriented insights into various problems in real time. In this paper, we deployed Microsoft Excel and Python to perform EDA of the covid-19 pandemic data in Nigeria and presented our results via visualizations and a dashboard using Tableau. The dataset is from the Nigeria Centre for Disease Control (NCDC) recorded between February 28th, 2020, and July 19th, 2022. This paper aims to follow the data and visually show the trends over the past 2 years and also show the powerful capabilities of these data analytics tools and techniques. Furthermore, our findings contribute to the current literature on Covid-19 research by showcasing how the virus has progressed in Nigeria over time and the insights thus far.


翻译:暂无翻译

0
下载
关闭预览

相关内容

Meta最新WWW2022《联邦计算导论》教程,附77页ppt
专知会员服务
60+阅读 · 2022年5月5日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
21+阅读 · 2023年7月12日
Arxiv
34+阅读 · 2022年12月20日
Arxiv
30+阅读 · 2021年8月18日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
Top
微信扫码咨询专知VIP会员