The rise of agentic systems that combine orchestration, tool use, and conversational capabilities, has been more visible by the recent advent of large language models (LLMs). While open-domain frameworks exist, applying them in private domains remains difficult due to heterogeneous tool formats, domain-specific jargon, restricted accessibility of APIs, and complex governance. Conventional solutions, such as fine-tuning on synthetic dialogue data, are burdensome and brittle under domain shifts, and risk degrading general performance. In this light, we introduce a framework for private-domain multi-agent conversational systems that avoids training and data generation by adopting behavior modeling and documentation. Our design simply assumes an orchestrator, a tool-calling agent, and a general chat agent, with tool integration defined through structured specifications and domain-informed instructions. This approach enables scalable adaptation to private tools and evolving contexts without continual retraining. The framework supports practical use cases, including lightweight deployment of multi-agent systems, leveraging API specifications as retrieval resources, and generating synthetic dialogue for evaluation -- providing a sustainable method for aligning agent behavior with domain expertise in private conversational ecosystems.
翻译:结合编排、工具使用与会话能力的智能体系统,随着大型语言模型(LLMs)的近期兴起而日益显著。尽管存在开放领域的框架,但由于异构的工具格式、领域特定的术语、受限的API可访问性以及复杂的治理机制,将其应用于私有领域仍然困难。传统解决方案(如在合成对话数据上进行微调)不仅繁琐且在领域迁移时脆弱,还可能降低通用性能。鉴于此,我们提出了一种私有领域多智能体会话系统框架,通过采用行为建模与文档化,避免了训练与数据生成。我们的设计仅假设一个编排器、一个工具调用智能体和一个通用聊天智能体,工具集成通过结构化规范与领域知识指导来定义。该方法能够在不持续重新训练的情况下,可扩展地适应私有工具与动态变化的上下文。该框架支持实际用例,包括多智能体系统的轻量级部署、利用API规范作为检索资源以及生成用于评估的合成对话,为在私有会话生态系统中将智能体行为与领域专业知识对齐提供了一种可持续的方法。